These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29893735)

  • 1. Decoloration of waste PET alcoholysis liquid by an electrochemical method.
    Li Y; Li M; Lu J; Li X; Ge M
    Water Sci Technol; 2018 Jun; 77(9-10):2463-2473. PubMed ID: 29893735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.
    GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ
    Water Sci Technol; 2012; 65(10):1795-800. PubMed ID: 22546794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.
    Almeida LC; Silva BF; Zanoni MV
    Chemosphere; 2015 Oct; 136():63-71. PubMed ID: 25935699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of Reactive Yellow X-RG by O
    Shen Y; Xu Q; Liang J; Xu W
    Water Sci Technol; 2016 Nov; 74(10):2483-2496. PubMed ID: 27858805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles.
    Jiang H; Sun Y; Feng J; Wang J
    Water Sci Technol; 2016; 74(5):1116-26. PubMed ID: 27642831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolorization and reusing of PET depolymerization waste liquid by electrochemical method with magnetic nanoelectrodes.
    Li M; Li Y; Lu J; Li X; Lu Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34531-34539. PubMed ID: 30311119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution.
    Monteagudo JM; Durán A
    Chemosphere; 2006 Nov; 65(7):1242-8. PubMed ID: 16762397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.
    Arslan-Alaton I
    J Environ Manage; 2007 Jan; 82(2):145-54. PubMed ID: 16624477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency and toxicity: comparison between the Fenton and electrochemical processes.
    Tavares MG; Santos DH; Torres SJ; Pimentel WR; Tonholo J; Zanta CL
    Water Sci Technol; 2016; 74(5):1143-54. PubMed ID: 27642834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of photo-Fenton process of RO concentrated coking wastewater using response surface methodology.
    Huiqing Z; Chunsong Y; Xian Z; Fan Y; Jun Y; Wei Z
    Water Sci Technol; 2012; 66(4):816-23. PubMed ID: 22766872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.
    El-Desoky HS; Ghoneim MM; El-Sheikh R; Zidan NM
    J Hazard Mater; 2010 Mar; 175(1-3):858-65. PubMed ID: 19926217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Decoloration and degradation of direct pink 12B by microwave-promoted heterogeneous Fenton-like reaction].
    Zheng HL; Xie LG; Hu P; Jiao SJ; Hu XB; Liu L; Wu YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1647-51. PubMed ID: 20707168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of electro-oxidation process for the treatment of Reactive Orange 107 using response surface methodology.
    Rajkumar K; Muthukumar M
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):148-60. PubMed ID: 21698362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent.
    Phalakornkule C; Polgumhang S; Tongdaung W; Karakat B; Nuyut T
    J Environ Manage; 2010; 91(4):918-26. PubMed ID: 20042267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-assisted electrochemical degradation of real textile wastewater.
    Alves PA; Malpass GR; Johansen HD; Azevedo EB; Gomes LM; Vilela WF; Motheo AJ
    Water Sci Technol; 2010; 61(2):491-8. PubMed ID: 20107276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process.
    Zhang H; Li Y; Zhong X; Ran X
    Water Sci Technol; 2011; 63(7):1373-80. PubMed ID: 21508539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate.
    Haspulat B; Gülce A; Gülce H
    J Hazard Mater; 2013 Sep; 260():518-26. PubMed ID: 23811374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS
    J Hazard Mater; 2008 May; 153(1-2):194-200. PubMed ID: 17875363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2008 Mar; 151(2-3):422-31. PubMed ID: 17656018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.