These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29893898)

  • 1. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch.
    Krepl M; Vögele J; Kruse H; Duchardt-Ferner E; Wöhnert J; Sponer J
    Nucleic Acids Res; 2018 Jul; 46(13):6528-6543. PubMed ID: 29893898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building a stable RNA U-turn with a protonated cytidine.
    Gottstein-Schmidtke SR; Duchardt-Ferner E; Groher F; Weigand JE; Gottstein D; Suess B; Wöhnert J
    RNA; 2014 Aug; 20(8):1163-72. PubMed ID: 24951555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.
    Meyer M; Sühnel J
    J Biomol Struct Dyn; 2003 Feb; 20(4):507-17. PubMed ID: 12529150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of N1 Riboswitch Affect its Dynamics and Recognition by Neomycin Through Conformational Selection.
    Chyży P; Kulik M; Re S; Sugita Y; Trylska J
    Front Mol Biosci; 2021; 8():633130. PubMed ID: 33708793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer.
    Heel SV; Bartosik K; Juen F; Kreutz C; Micura R; Breuker K
    J Am Chem Soc; 2023 Jul; 145(28):15284-15294. PubMed ID: 37420313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.
    Allnér O; Nilsson L; Villa A
    RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent UV resonance Raman spectra of cytosine and uracil.
    Billinghurst BE; Oladepo SA; Loppnow GR
    J Phys Chem B; 2009 May; 113(20):7392-7. PubMed ID: 19438283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly).
    Chang AT; Nikonowicz EP
    FEBS Lett; 2013 Nov; 587(21):3495-9. PubMed ID: 24036450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments.
    Zhang Z; Vögele J; Mráziková K; Kruse H; Cang X; Wöhnert J; Krepl M; Šponer J
    J Phys Chem B; 2021 Jan; 125(3):825-840. PubMed ID: 33467852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads.
    Meyer M; Hocquet A; Sühnel J
    J Comput Chem; 2005 Mar; 26(4):352-64. PubMed ID: 15648098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the
    Lee J; Sung SE; Lee J; Kang JY; Lee JH; Choi BS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.
    Ren A; Rajashankar KR; Patel DJ
    Structure; 2015 Aug; 23(8):1375-1381. PubMed ID: 26118534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by
    Overbeck JH; Vögele J; Nussbaumer F; Duchardt-Ferner E; Kreutz C; Wöhnert J; Sprangers R
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202218064. PubMed ID: 36970768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for ligand binding to the guanidine-II riboswitch.
    Reiss CW; Strobel SA
    RNA; 2017 Sep; 23(9):1338-1343. PubMed ID: 28600356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.