These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 29894308)

  • 1. The effects of optical sensor-tissue separation in endocavitary photoplethysmography.
    Patel Z; Thaha MA; Kyriacou PA
    Physiol Meas; 2018 Jul; 39(7):075001. PubMed ID: 29894308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico and in vivo investigations using an endocavitary photoplethysmography sensor for tissue viability monitoring.
    Chatterjee S; Patel Z; Thaha MA; Kyriacou PA
    J Biomed Opt; 2020 Feb; 25(2):1-16. PubMed ID: 32112542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an intraluminal intestinal photoplethysmography sensor.
    Patel Z; Thaha MA; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1840-1843. PubMed ID: 29060248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Biomed Opt; 2010; 15(2):027012. PubMed ID: 20459286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation.
    Robinson MB; Wisniowiecki AM; Butcher RJ; Wilson MA; Nance Ericson M; Cote GL
    J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29777581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an optoelectronic sensor for the investigation of photoplethysmographic signals from the anterior fontanel of the newborn.
    May JM; Kyriacou PA; Petros AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():18-21. PubMed ID: 22254240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved design of optical sensor for long-term measurement of arterial blood flow waveform.
    Djurić B; Suzić S; Stojadinović B; Nestorović Z; Ivanović M; Suzić-Lazić J; Nešić D; Mazić S; Tenne T; Zikich D; Žikić D
    Biomed Microdevices; 2017 Sep; 19(3):48. PubMed ID: 28560700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoplethysmographic measurements from the esophagus using a new fiber-optic reflectance sensor.
    Phillips JP; Langford RM; Chang SH; Kyriacou PA; Jones DP
    J Biomed Opt; 2011 Jul; 16(7):077005. PubMed ID: 21806285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of key design parameters for mitigating motion artefact in the mobile reflectance PPG signal to improve estimation of arterial oxygenation.
    Kasbekar RS; Mendelson Y
    Physiol Meas; 2018 Jul; 39(7):075008. PubMed ID: 30051881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse-model-based cuffless blood pressure estimation using a single photoplethysmography sensor.
    Suzuki A
    Proc Inst Mech Eng H; 2015 Jul; 229(7):499-505. PubMed ID: 26040284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography.
    Han S; Roh D; Park J; Shin H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.
    Teichmann D; De Matteis D; Bartelt T; Walter M; Leonhardt S
    IEEE J Biomed Health Inform; 2015 May; 19(3):784-93. PubMed ID: 25826812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camera-based photoplethysmography in an intraoperative setting.
    Trumpp A; Lohr J; Wedekind D; Schmidt M; Burghardt M; Heller AR; Malberg H; Zaunseder S
    Biomed Eng Online; 2018 Mar; 17(1):33. PubMed ID: 29540189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion limitations of non-contact photoplethysmography due to the optical and topological properties of skin.
    Butler MJ; Crowe JA; Hayes-Gill BR; Rodmell PI
    Physiol Meas; 2016 May; 37(5):N27-37. PubMed ID: 27100666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: results of a human hypoxia study.
    Venema B; Blanik N; Blazek V; Gehring H; Opp A; Leonhardt S
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2003-10. PubMed ID: 22547451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI.
    Spicher N; Kukuk M; Maderwald S; Ladd ME
    Biomed Eng Online; 2016 Nov; 15(1):126. PubMed ID: 27881126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.