BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29894469)

  • 1. OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections.
    Kers JA; DeFusco AW; Park JH; Xu J; Pulse ME; Weiss WJ; Handfield M
    PLoS One; 2018; 13(6):e0197467. PubMed ID: 29894469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological, Toxicological, and Dose Range Assessment of OG716, a Novel Lantibiotic for the Treatment of
    Pulse ME; Weiss WJ; Kers JA; DeFusco AW; Park JH; Handfield M
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30670434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutacin 1140 Lantibiotic Variants Are Efficacious Against
    Kers JA; Sharp RE; Defusco AW; Park JH; Xu J; Pulse ME; Weiss WJ; Handfield M
    Front Microbiol; 2018; 9():415. PubMed ID: 29615987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current developments in lantibiotic discovery for treating Clostridium difficile infection.
    Sandiford SK
    Expert Opin Drug Discov; 2019 Jan; 14(1):71-79. PubMed ID: 30479173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMT19969 for Clostridium difficile infection (CDI): in vivo efficacy compared with fidaxomicin and vancomycin in the hamster model of CDI.
    Sattar A; Thommes P; Payne L; Warn P; Vickers RJ
    J Antimicrob Chemother; 2015; 70(6):1757-62. PubMed ID: 25652749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of RBx 11760, a novel biaryl oxazolidinone, against Clostridium difficile.
    Mathur T; Kumar M; Barman TK; Kumar GR; Kalia V; Singhal S; Raj VS; Upadhyay DJ; Das B; Bhatnagar PK
    J Antimicrob Chemother; 2011 May; 66(5):1087-95. PubMed ID: 21393140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection.
    Crowther GS; Baines SD; Todhunter SL; Freeman J; Chilton CH; Wilcox MH
    J Antimicrob Chemother; 2013 Jan; 68(1):168-76. PubMed ID: 22966180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel therapeutic strategies for Clostridium difficile infections.
    Ünal CM; Steinert M
    Expert Opin Ther Targets; 2016; 20(3):269-85. PubMed ID: 26565670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxyl Analogue of Mutacin 1140, a Scaffold for Lead Antibacterial Discovery.
    Escano J; Ravichandran A; Salamat B; Smith L
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28500042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infection of hamsters with historical and epidemic BI types of Clostridium difficile.
    Razaq N; Sambol S; Nagaro K; Zukowski W; Cheknis A; Johnson S; Gerding DN
    J Infect Dis; 2007 Dec; 196(12):1813-9. PubMed ID: 18190262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of the hamster model of Clostridium difficile disease.
    Douce G; Goulding D
    Methods Mol Biol; 2010; 646():215-27. PubMed ID: 20597012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of Clostridium difficile infection.
    Cherian PT; Wu X; Yang L; Scarborough JS; Singh AP; Alam ZA; Lee RE; Hurdle JG
    J Antimicrob Chemother; 2015 Nov; 70(11):3061-9. PubMed ID: 26286574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonantimicrobial drug targets for Clostridium difficile infections.
    Darkoh C; Deaton M; DuPont HL
    Future Microbiol; 2017 Sep; 12(11):975-985. PubMed ID: 28759258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections.
    Gil F; Paredes-Sabja D
    Future Microbiol; 2016 Sep; 11():1179-89. PubMed ID: 27546386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical, epidemiological and microbiological characteristics of relapse and re-infection in Clostridium difficile infection.
    Gómez S; Chaves F; Orellana MA
    Anaerobe; 2017 Dec; 48():147-151. PubMed ID: 28830842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial and Solubility Optimization of Thiomuracin A.
    LaMarche MJ; Leeds JA; Brewer J; Dean K; Ding J; Dzink-Fox J; Gamber G; Jain A; Kerrigan R; Krastel P; Lee K; Lombardo F; McKenney D; Neckermann G; Osborne C; Palestrant D; Patane MA; Rann EM; Robinson Z; Schmitt E; Stams T; Tiamfook S; Yu D; Whitehead L
    J Med Chem; 2016 Jul; 59(14):6920-8. PubMed ID: 27355833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential for emerging therapeutic options for Clostridium difficile infection.
    Mathur H; Rea MC; Cotter PD; Ross RP; Hill C
    Gut Microbes; 2014; 5(6):696-710. PubMed ID: 25564777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy for the prevention of Clostridium difficile infection.
    Howerton A; Patra M; Abel-Santos E
    J Infect Dis; 2013 May; 207(10):1498-504. PubMed ID: 23420906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
    Freeman J; Marquis M; Crowther GS; Todhunter SL; Fawley WN; Chilton CH; Moeck G; Lehoux D; Wilcox MH
    J Antimicrob Chemother; 2012 Dec; 67(12):2919-26. PubMed ID: 22899803
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Banawas SS
    Biomed Res Int; 2018; 2018():8414257. PubMed ID: 29682562
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.