These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29894628)

  • 1. Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide.
    Arif T; Colas G; Filleter T
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22537-22544. PubMed ID: 29894628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.
    Chen H; Filleter T
    Nanotechnology; 2015 Mar; 26(13):135702. PubMed ID: 25751675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.
    Kwon S; Lee KE; Lee H; Koh SJ; Ko JH; Kim YH; Kim SO; Park JY
    J Phys Chem B; 2018 Jan; 122(2):543-547. PubMed ID: 28926260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hillock-like phenomenon with low friction and adhesion on a graphene surface induced by relative sliding at the interface of graphene and the SiO
    Fan N; Guo J; Jing G; Liu C; Wang Q; Wu G; Jiang H; Peng B
    Nanoscale Adv; 2020 Jun; 2(6):2548-2557. PubMed ID: 36133360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological Performance of an Imidazolium Ionic Liquid-Functionalized SiO
    Song W; Yan J; Ji H
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50573-50583. PubMed ID: 34647718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Environmental Humidity on the Wear and Friction of a Silica/Silicon Tribopair Lubricated with a Hydrophilic Ionic Liquid.
    Arcifa A; Rossi A; Espinosa-Marzal RM; Spencer ND
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2961-73. PubMed ID: 26785142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surface morphology on friction of graphene on various substrates.
    Cho DH; Wang L; Kim JS; Lee GH; Kim ES; Lee S; Lee SY; Hone J; Lee C
    Nanoscale; 2013 Apr; 5(7):3063-9. PubMed ID: 23462814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of interface hydration on sliding of graphene and molybdenum-disulfide single-layers.
    Lin H; Rauf A; Severin N; Sokolov IM; Rabe JP
    J Colloid Interface Sci; 2019 Mar; 540():142-147. PubMed ID: 30639661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Interfacial Water in the Tribological Behavior of Graphene in an Electric Field.
    Lang H; Zou K; Chen R; Huang Y; Peng Y
    Nano Lett; 2022 Aug; 22(15):6055-6061. PubMed ID: 35868008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity-Dependent Friction of Graphene at Electrical Contact Interfaces.
    Lang H; Peng Y; Zou K; Huang Y; Song C
    Langmuir; 2023 Aug; 39(32):11363-11370. PubMed ID: 37532707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological behavior of aluminum-CNT coated metal composite under dry and water lubricated conditions.
    Kim IY; Lee YZ
    J Nanosci Nanotechnol; 2011 Jan; 11(1):335-8. PubMed ID: 21446451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frictional characteristics of nano-confined water mediated hole-doped single-layer graphene on silica surface.
    Chu ED; Wang PH; Hong YZ; Woon WY; Chiu HC
    Nanotechnology; 2019 Jan; 30(4):045706. PubMed ID: 30479310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.
    Jaiswal V; Kalyani ; Umrao S; Rastogi RB; Kumar R; Srivastava A
    ACS Appl Mater Interfaces; 2016 May; 8(18):11698-710. PubMed ID: 27097308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Coating via Chemical Vapor Deposition for Improving Friction and Wear of Gray Cast Iron at Interfaces.
    Tripathi K; Gyawali G; Lee SW
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32336-32351. PubMed ID: 28853852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Observation of Atomic-Scale Gliding on Hydrophilic Surfaces.
    Go TW; Lee H; Lee H; Song HC; Park JY
    J Phys Chem Lett; 2022 Jul; 13(29):6612-6618. PubMed ID: 35834560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide.
    Daio T; Bayer T; Ikuta T; Nishiyama T; Takahashi K; Takata Y; Sasaki K; Matthew Lyth S
    Sci Rep; 2015 Jul; 5():11807. PubMed ID: 26133654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.