These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2989463)

  • 1. Adenine nucleotide and lactate levels in organs from copper-deficient mice and brindled mice.
    Rusinko N; Prohaska JR
    J Nutr; 1985 Jul; 115(7):936-43. PubMed ID: 2989463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased brain ascorbate levels in copper-deficient mice and in brindled mice.
    Prohaska JR; Cox DA
    J Nutr; 1983 Dec; 113(12):2623-9. PubMed ID: 6655518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum cholesterol levels are not elevated in young copper-deficient rats, mice or brindled mice.
    Prohaska JR; Korte JJ; Bailey WR
    J Nutr; 1985 Dec; 115(12):1702-7. PubMed ID: 4067661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice.
    Prohaska JR
    J Nutr; 1983 Oct; 113(10):2048-58. PubMed ID: 6312000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of copper deficiency states in the murine mutants blotchy and brindled. Changes in copper-dependent enzyme activity in 13-day-old mice.
    Phillips M; Camakaris J; Danks DM
    Biochem J; 1986 Aug; 238(1):177-83. PubMed ID: 3026340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbic acid synthesis and concentrations in organs of copper-deficient and brindled mice.
    Prohaska JR; Cox DA; Bailey WR
    Biol Trace Elem Res; 1984 Oct; 6(5):441-53. PubMed ID: 24264181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repletion of copper-deficient mice and brindled mice with copper or iron.
    Prohaska JR
    J Nutr; 1984 Feb; 114(2):422-30. PubMed ID: 6694001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dietary copper deficiency on male offspring of heterozygous brindled mice.
    Prohaska JR
    Br J Nutr; 1989 Jul; 62(1):177-84. PubMed ID: 2789980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Cu,Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats.
    Prohaska JR
    J Nutr; 1991 Mar; 121(3):355-63. PubMed ID: 1848285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary or genetic copper deficiency on brain catecholamines, trace metals and enzymes in mice and rats.
    Prohaska JR; Smith TL
    J Nutr; 1982 Sep; 112(9):1706-17. PubMed ID: 6286908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid and fatty acid composition of organs from copper-deficient mice.
    Cunnane SC; McAdoo KR; Prohaska JR
    J Nutr; 1986 Jul; 116(7):1248-56. PubMed ID: 3746462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of phenotype and copper distribution in blotchy and brindled mutant mice and in nutritionally copper deficient controls.
    Phillips M; Camakaris J; Danks DM
    Biol Trace Elem Res; 1991 Apr; 29(1):11-29. PubMed ID: 1711358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent regional changes in brain copper, cuproenzymes and catecholamines following perinatal copper deficiency in mice.
    Prohaska JR; Bailey WR
    J Nutr; 1993 Jul; 123(7):1226-34. PubMed ID: 8391562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental variation in copper, zinc and metallothionein mRNA in brindled mutant and nutritionally copper deficient mice.
    Mercer JF; Stevenson T; Wake SA; Mitropoulos G; Camakaris J; Danks DM
    Biochim Biophys Acta; 1991 Oct; 1097(3):205-11. PubMed ID: 1681908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of copper metabolism between brindled mice and dietary copper-deficient mice using 67Cu.
    Prohaska JR
    J Nutr; 1983 Jun; 113(6):1212-20. PubMed ID: 6854413
    [No Abstract]   [Full Text] [Related]  

  • 16. Cardiac cytochrome C oxidase activity and contents of subunits 1 and 4 are altered in offspring by low prenatal copper intake by rat dams.
    Johnson WT; Anderson CM
    J Nutr; 2008 Jul; 138(7):1269-73. PubMed ID: 18567746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of Cu(II) transport and accumulation by hepatocytes from copper-deficient mice and the brindled mouse model of Menkes disease.
    Darwish HM; Hoke JE; Ettinger MJ
    J Biol Chem; 1983 Nov; 258(22):13621-6. PubMed ID: 6685731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic dietary copper deficiency alters biochemical and morphological properties of mouse lymphoid tissues.
    Prohaska JR; Downing SW; Lukasewycz OA
    J Nutr; 1983 Aug; 113(8):1583-90. PubMed ID: 6308192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies.
    Johnson WT; Newman SM
    J Nutr Biochem; 2007 Feb; 18(2):97-104. PubMed ID: 16713228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased rat brain cytochrome c correlates with degree of perinatal copper deficiency rather than apoptosis.
    Gybina AA; Prohaska JR
    J Nutr; 2003 Nov; 133(11):3361-8. PubMed ID: 14608045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.