BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29895677)

  • 1. Microprocessor-dependent processing of splice site overlapping microRNA exons does not result in changes in alternative splicing.
    Pianigiani G; Licastro D; Fortugno P; Castiglia D; Petrovic I; Pagani F
    RNA; 2018 Sep; 24(9):1158-1171. PubMed ID: 29895677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions.
    Melamed Z; Levy A; Ashwal-Fluss R; Lev-Maor G; Mekahel K; Atias N; Gilad S; Sharan R; Levy C; Kadener S; Ast G
    Mol Cell; 2013 Jun; 50(6):869-81. PubMed ID: 23747012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations.
    Aslan D; Garde C; Nygaard MK; Helbo AS; Dimopoulos K; Hansen JW; Severinsen MT; Treppendahl MB; Sjø LD; Grønbæk K; Kristensen LS
    Oncotarget; 2016 Mar; 7(9):9951-63. PubMed ID: 26848861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri-miRNA structures.
    Mattioli C; Pianigiani G; Pagani F
    Nucleic Acids Res; 2013 Oct; 41(18):8680-91. PubMed ID: 23863840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosha promotes splicing of a pre-microRNA-like alternative exon.
    Havens MA; Reich AA; Hastings ML
    PLoS Genet; 2014 May; 10(5):e1004312. PubMed ID: 24786770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross talk between spliceosome and microprocessor defines the fate of pre-mRNA.
    Mattioli C; Pianigiani G; Pagani F
    Wiley Interdiscip Rev RNA; 2014; 5(5):647-58. PubMed ID: 24788135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome.
    Agranat-Tamir L; Shomron N; Sperling J; Sperling R
    Nucleic Acids Res; 2014 Apr; 42(7):4640-51. PubMed ID: 24464992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping.
    Wu G; Fan L; Edmonson MN; Shaw T; Boggs K; Easton J; Rusch MC; Webb TR; Zhang J; Potter PM
    RNA; 2018 Aug; 24(8):1056-1066. PubMed ID: 29844105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DROSHA targets its own transcript to modulate alternative splicing.
    Lee D; Nam JW; Shin C
    RNA; 2017 Jul; 23(7):1035-1047. PubMed ID: 28400409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing remodels the let-7 primary microRNA to facilitate Drosha processing in Caenorhabditis elegans.
    Mondol V; Ahn BC; Pasquinelli AE
    RNA; 2015 Aug; 21(8):1396-403. PubMed ID: 26081559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana.
    Wang J; Chen S; Jiang N; Li N; Wang X; Li Z; Li X; Liu H; Li L; Yang Y; Ni T; Yu C; Ma J; Zheng B; Ren G
    Nucleic Acids Res; 2019 Sep; 47(15):7886-7900. PubMed ID: 31216029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript.
    Rasschaert P; Figueroa T; Dambrine G; Rasschaert D; Laurent S
    RNA Biol; 2016 Dec; 13(12):1310-1322. PubMed ID: 27715458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys.
    Parra M; Booth BW; Weiszmann R; Yee B; Yeo GW; Brown JB; Celniker SE; Conboy JG
    RNA; 2018 Sep; 24(9):1255-1265. PubMed ID: 29959282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feed-forward microprocessing and splicing activities at a microRNA-containing intron.
    Janas MM; Khaled M; Schubert S; Bernstein JG; Golan D; Veguilla RA; Fisher DE; Shomron N; Levy C; Novina CD
    PLoS Genet; 2011 Oct; 7(10):e1002330. PubMed ID: 22028668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel, abundant Drosha isoforms are deficient in miRNA processing in cancer cells.
    Dai L; Hallmark L; Bofill De Ros X; Crouch H; Chen S; Shi T; Yang A; Lian C; Zhao Y; Tran B; Gu S
    RNA Biol; 2020 Nov; 17(11):1603-1612. PubMed ID: 32819190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA biogenesis: isolation and characterization of the microprocessor complex.
    Gregory RI; Chendrimada TP; Shiekhattar R
    Methods Mol Biol; 2006; 342():33-47. PubMed ID: 16957365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.
    Seyhan AA
    Mol Biosyst; 2016 Jan; 12(1):295-312. PubMed ID: 26617199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.
    Butkytė S; Čiupas L; Jakubauskienė E; Vilys L; Mocevicius P; Kanopka A; Vilkaitis G
    Clin Epigenetics; 2016; 8():33. PubMed ID: 27019673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crosstalk between plant microRNA biogenesis factors and the spliceosome.
    Szweykowska-Kulińska Z; Jarmolowski A; Vazquez F
    Plant Signal Behav; 2013 Nov; 8(11):e26955. PubMed ID: 24300047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing factors as regulators of miRNA biogenesis - links to human disease.
    Ratnadiwakara M; Mohenska M; Änkö ML
    Semin Cell Dev Biol; 2018 Jul; 79():113-122. PubMed ID: 29042235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.