BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29895694)

  • 1. Cancer-mutation network and the number and specificity of driver mutations.
    Iranzo J; Martincorena I; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6010-E6019. PubMed ID: 29895694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level.
    Li W; Wang R; Bai L; Yan Z; Sun Z
    BMC Syst Biol; 2012 Jun; 6():64. PubMed ID: 22691569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive identification of mutational cancer driver genes across 12 tumor types.
    Tamborero D; Gonzalez-Perez A; Perez-Llamas C; Deu-Pons J; Kandoth C; Reimand J; Lawrence MS; Getz G; Bader GD; Ding L; Lopez-Bigas N
    Sci Rep; 2013 Oct; 3():2650. PubMed ID: 24084849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dJ/dS Ratio Test Reveals Hundreds of Novel Putative Cancer Drivers.
    Chen H; Xing K; He X
    Mol Biol Evol; 2015 Aug; 32(8):2181-5. PubMed ID: 25873590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico learning of tumor evolution through mutational time series.
    Auslander N; Wolf YI; Koonin EV
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9501-9510. PubMed ID: 31015295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pervasive conditional selection of driver mutations and modular epistasis networks in cancer.
    Iranzo J; Gruenhagen G; Calle-Espinosa J; Koonin EV
    Cell Rep; 2022 Aug; 40(8):111272. PubMed ID: 36001960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of recurrent properties of cancer genes to identify novel drivers.
    D'Antonio M; Ciccarelli FD
    Genome Biol; 2013 May; 14(5):R52. PubMed ID: 23718799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Current topics in mutations in the cancer genome].
    Iwaya T; Mimori K; Wakabayashi G
    Nihon Geka Gakkai Zasshi; 2012 Mar; 113(2):185-90. PubMed ID: 22582578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network perturbation by recurrent regulatory variants in cancer.
    Jang K; Kim K; Cho A; Lee I; Choi JK
    PLoS Comput Biol; 2017 Mar; 13(3):e1005449. PubMed ID: 28333928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.