These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29895764)

  • 1. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of a Multiphase Model Based on a Comprehensive Data Set for a Normal Strength Concrete.
    Gamnitzer P; Drexel M; Brugger A; Hofstetter G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30866502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition.
    Kim SG; Park YS; Lee YH
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
    Yoon M; Kim G; Kim Y; Lee T; Choe G; Hwang E; Nam J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical Evaluation of CEB-FIP 2010 Model for Concrete Creep and Shrinkage.
    Pan Z; Zhang H; Zeng B; Wang Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
    Schlappal T; Schweigler M; Gmainer S; Peyerl M; Pichler B
    Mater Struct; 2017; 50(6):244. PubMed ID: 29213209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Shrinkage Reducing Admixture on Drying Shrinkage of Concrete with Different w/c Ratios.
    Kioumarsi M; Azarhomayun F; Haji M; Shekarchi M
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep Deformation and Its Effect on Mechanical Properties and Microstructure of Magnesium Phosphate Cement Concrete.
    Gao Y; Qin J; Li Z; Jia X; Qian J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Zhou X; Wang X; Huang L
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Review on the Creep of Fiber-Reinforced Concrete.
    Tošić N; Aidarov S; de la Fuente A
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Feedback Control Method for Determining Early-Age Restrained Creep of Concrete Using a Temperature Stress Testing Machine.
    Zhu H; Li Q; Hu Y; Ma R
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29941829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Studies on the Effect of Properties and Micro-Structure on the Creep of Concrete-Filled Steel Tubes.
    Zhang R; Ma L; Wang Q; Li J; Wang Y; Chen H; Samosvat V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants.
    Šmilauer V; Dohnalová L; Jirásek M; Sanahuja J; Seetharam S; Babaei S
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Creep and Shrinkage Behavior of Concrete-Filled Steel Tube.
    Nguyen DB; Lin WS; Liao WC
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Properties of Structural Lightweight Concrete with Sintered Fly Ash Aggregate in Terms of Its Suitability for Use in Prestressed Members.
    Rodacka M; Domagała L; Szydłowski R
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Exploration of Economic Polypropylene-Fiber-Reinforced ECC with Superfine River Sand (SSPP-ECC) Applied to a Bridge Pavement Leveling Overlay.
    Wan F; Zhu Z; Wang W; Tan G; Yang R; Zhang Z
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.