BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29895891)

  • 1. Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila.
    Apitz H; Salecker I
    Nat Commun; 2018 Jun; 9(1):2295. PubMed ID: 29895891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling.
    Maves L; Schubiger G
    Development; 1998 Jan; 125(1):115-24. PubMed ID: 9389669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional control of morphological properties of direction-selective T4/T5 neurons in
    Schilling T; Ali AH; Leonhardt A; Borst A; Pujol-Martí J
    Development; 2019 Jan; 146(2):. PubMed ID: 30642835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system.
    Song Y; Chung S; Kunes S
    Mol Cell; 2000 Nov; 6(5):1143-54. PubMed ID: 11106753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless.
    Grimm S; Pflugfelder GO
    Science; 1996 Mar; 271(5255):1601-4. PubMed ID: 8599120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila T-box transcription factor Optomotor-blind prevents pathological folding and local overgrowth in wing epithelium through confining Hh signal.
    Umemori M; Takemura M; Maeda K; Ohba K; Adachi-Yamada T
    Dev Biol; 2007 Aug; 308(1):68-81. PubMed ID: 17573067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decapentaplegic signaling regulates Wingless ligand production and target activation during Drosophila wing development.
    Li Y; Zhang F; Jiang N; Liu T; Shen J; Zhang J
    FEBS Lett; 2020 Apr; 594(7):1176-1186. PubMed ID: 31814119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the T-box gene optomotor-blind in patterning the Drosophila wing.
    del Alamo Rodríguez D; Terriente Felix J; Díaz-Benjumea FJ
    Dev Biol; 2004 Apr; 268(2):481-92. PubMed ID: 15063183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible manipulation of Omb levels in the endogenous expression region of Drosophila wing by combinational overexpression and suppression strategy.
    Zhang XB; Dong W; Li KX; Wang JJ; Shen J; Moussian B; Zhang JZ
    Insect Sci; 2020 Feb; 27(1):14-21. PubMed ID: 31246335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila.
    Cook O; Biehs B; Bier E
    Development; 2004 May; 131(9):2113-24. PubMed ID: 15073155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
    Simon E; Guerrero I
    PLoS One; 2015; 10(3):e0121239. PubMed ID: 25793870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam.
    Zhang X; Luo D; Pflugfelder GO; Shen J
    Development; 2013 Jul; 140(14):2917-22. PubMed ID: 23821035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomotor-blind expression in glial cells is required for correct axonal projection across the Drosophila inner optic chiasm.
    Hofmeyer K; Kretzschmar D; Pflugfelder GO
    Dev Biol; 2008 Mar; 315(1):28-41. PubMed ID: 18234176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decapentaplegic and growth control in the developing Drosophila wing.
    Akiyama T; Gibson MC
    Nature; 2015 Nov; 527(7578):375-8. PubMed ID: 26550824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in
    Hörmann N; Schilling T; Ali AH; Serbe E; Mayer C; Borst A; Pujol-Martí J
    Development; 2020 May; 147(9):. PubMed ID: 32238425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting.
    Shen J; Dahmann C; Pflugfelder GO
    BMC Dev Biol; 2010 Feb; 10():23. PubMed ID: 20178599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differing strategies for the establishment and maintenance of teashirt and homothorax repression in the Drosophila wing.
    Zirin JD; Mann RS
    Development; 2004 Nov; 131(22):5683-93. PubMed ID: 15509768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker.
    Yang L; Meng F; Ma D; Xie W; Fang M
    Development; 2013 Jan; 140(2):413-22. PubMed ID: 23250215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway.
    Kane NS; Vora M; Padgett RW; Li Y
    Fly (Austin); 2018; 12(2):105-117. PubMed ID: 30015555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis.
    Adachi-Yamada T; Nakamura M; Irie K; Tomoyasu Y; Sano Y; Mori E; Goto S; Ueno N; Nishida Y; Matsumoto K
    Mol Cell Biol; 1999 Mar; 19(3):2322-9. PubMed ID: 10022918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.