These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29896210)

  • 1. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of
    Gruber A; Oberhuber W; Wieser G
    Front Plant Sci; 2018; 9():711. PubMed ID: 29896210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.
    Wieser G; Grams TE; Matyssek R; Oberhuber W; Gruber A
    Tree Physiol; 2015 Mar; 35(3):279-88. PubMed ID: 25737326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine Root Abundance and Dynamics of Stone Pine (
    Kubisch P; Leuschner C; Coners H; Gruber A; Hertel D
    Front Plant Sci; 2017; 8():602. PubMed ID: 28469633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone.
    Gruber A; Zimmermann J; Wieser G; Oberhuber W
    Ann For Sci; 2009 Aug; 66(5):. PubMed ID: 21423861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.
    Wieser G; Oberhuber W; Gruber A; Leo M; Matyssek R; Grams TE
    Front Plant Sci; 2016; 7():799. PubMed ID: 27375653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline.
    Anadon-Rosell A; Rixen C; Cherubini P; Wipf S; Hagedorn F; Dawes MA
    PLoS One; 2014; 9(6):e100577. PubMed ID: 24956273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.
    Sullivan PF; Ellison SB; McNown RW; Brownlee AH; Sveinbjörnsson B
    Ecology; 2015 Mar; 96(3):716-27. PubMed ID: 26236868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline.
    Lett S; Teuber LM; Krab EJ; Michelsen A; Olofsson J; Nilsson MC; Wardle DA; Dorrepaal E
    Glob Chang Biol; 2020 Oct; 26(10):5754-5766. PubMed ID: 32715578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains.
    Davis EL; Gedalof Z
    Glob Chang Biol; 2018 Oct; 24(10):4489-4504. PubMed ID: 29856111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables.
    Gruber A; Baumgartner D; Zimmermann J; Oberhuber W
    Trees (Berl West); 2009 Jun; 23(3):623-635. PubMed ID: 21509148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree-ring anatomy of Pinus cembra trees opens new avenues for climate reconstructions in the European Alps.
    Lopez-Saez J; Corona C; von Arx G; Fonti P; Slamova L; Stoffel M
    Sci Total Environ; 2023 Jan; 855():158605. PubMed ID: 36116650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline.
    Streit K; Siegwolf RT; Hagedorn F; Schaub M; Buchmann N
    Plant Cell Environ; 2014 Feb; 37(2):315-26. PubMed ID: 24003840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil warming opens the nitrogen cycle at the alpine treeline.
    Dawes MA; Schleppi P; Hättenschwiler S; Rixen C; Hagedorn F
    Glob Chang Biol; 2017 Jan; 23(1):421-434. PubMed ID: 27207568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.
    Loranger H; Zotz G; Bader MY
    AoB Plants; 2016; 8():. PubMed ID: 27402618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of atmospheric acid deposition on tree growth and forest understory vegetation in the Athabasca Oil Sands Region.
    Bartels SF; Gendreau-Berthiaume B; Macdonald SE
    Sci Total Environ; 2019 Dec; 696():133877. PubMed ID: 31442720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.
    Fajardo A; Piper FI; Hoch G
    Ann Bot; 2013 Aug; 112(3):623-31. PubMed ID: 23788748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understory plant removal counteracts tree thinning effect on soil respiration in a temperate forest.
    Zhao B; Ballantyne AP; Meng S; Zhao G; Zheng Z; Zhu J; Cao J; Zhang Y; Zhao X
    Glob Chang Biol; 2022 Oct; 28(20):6102-6113. PubMed ID: 35833875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone.
    Oberhuber W
    Tree Physiol; 2004 Mar; 24(3):291-301. PubMed ID: 14704138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.
    Dawes MA; Philipson CD; Fonti P; Bebi P; Hättenschwiler S; Hagedorn F; Rixen C
    Glob Chang Biol; 2015 May; 21(5):2005-21. PubMed ID: 25471674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carbon charging of pines at the climatic treeline: a global comparison.
    Hoch G; Körner C
    Oecologia; 2003 Mar; 135(1):10-21. PubMed ID: 12647099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.