BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 29896301)

  • 1. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
    Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX
    Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy.
    Chen Z; Wang X; Zhao N; Chen H; Guo G
    Expert Opin Drug Deliv; 2023; 20(11):1623-1642. PubMed ID: 38059646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Drug Delivery Systems in Cancer Therapy.
    Unsoy G; Gunduz U
    Curr Drug Targets; 2018 Feb; 19(3):202-212. PubMed ID: 27033191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery.
    Wang D; Chen W; Li H; Huang G; Zhou Y; Wang Y; Wan W; You B; Liu Y; Zhang X
    Int J Pharm; 2020 Jul; 585():119456. PubMed ID: 32492507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.
    Chen Z; Zhang L; Song Y; He J; Wu L; Zhao C; Xiao Y; Li W; Cai B; Cheng H; Li W
    Biomaterials; 2015 Jun; 52():240-50. PubMed ID: 25818430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers.
    Chen J; Ding J; Xiao C; Zhuang X; Chen X
    Biomater Sci; 2015 Jul; 3(7):988-1001. PubMed ID: 26221934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers.
    Jin Y; Wang Y; Liu X; Zhou J; Wang X; Feng H; Liu H
    Drug Des Devel Ther; 2020; 14():5205-5215. PubMed ID: 33268983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives.
    Edis Z; Wang J; Waqas MK; Ijaz M; Ijaz M
    Int J Nanomedicine; 2021; 16():1313-1330. PubMed ID: 33628022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of rod-like chitosan-quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery.
    Rahimi S; Khoee S; Ghandi M
    Int J Biol Macromol; 2019 May; 128():279-289. PubMed ID: 30695722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-responsive Polymeric Nanosystems for Therapeutic Applications.
    Handa M; Singh A; Flora SJS; Shukla R
    Curr Pharm Des; 2022; 28(11):910-921. PubMed ID: 34879797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibly-regulated drug release using poly(tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy.
    Chen C; Ma T; Tang W; Wang X; Wang Y; Zhuang J; Zhu Y; Wang P
    Nanoscale Horiz; 2020 Jun; 5(6):986-998. PubMed ID: 32322871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.
    Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN
    Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative nano-carriers in anticancer drug delivery-a comprehensive review.
    Dong P; Rakesh KP; Manukumar HM; Mohammed YHE; Karthik CS; Sumathi S; Mallu P; Qin HL
    Bioorg Chem; 2019 Apr; 85():325-336. PubMed ID: 30658232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting.
    Hou X; Zhong D; Li Y; Mao H; Yang J; Zhang H; Luo K; Gong Q; Gu Z
    J Nanobiotechnology; 2021 Apr; 19(1):111. PubMed ID: 33874945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review.
    Sultana S; Khan MR; Kumar M; Kumar S; Ali M
    J Drug Target; 2013 Feb; 21(2):107-25. PubMed ID: 22873288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of docetaxel.
    Song S; Chen F; Qi H; Li F; Xin T; Xu J; Ye T; Sheng N; Yang X; Pan W
    Pharm Res; 2014 Apr; 31(4):1032-45. PubMed ID: 24154802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy.
    Ray P; Confeld M; Borowicz P; Wang T; Mallik S; Quadir M
    Colloids Surf B Biointerfaces; 2019 Feb; 174():126-135. PubMed ID: 30447521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy.
    Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q
    Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.
    Din FU; Aman W; Ullah I; Qureshi OS; Mustapha O; Shafique S; Zeb A
    Int J Nanomedicine; 2017; 12():7291-7309. PubMed ID: 29042776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.