BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29896305)

  • 81. Efficacy of optical coherence tomography in the diagnosing of oral cancerous lesion: systematic review and meta-analysis.
    Kim DH; Kim SW; Hwang SH
    Head Neck; 2023 Feb; 45(2):473-481. PubMed ID: 36305811
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions.
    Dong Y; Wan J; Wang X; Xue JH; Zou J; He H; Li P; Hou A; Ma H
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3728-3738. PubMed ID: 34260351
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Label-free imaging and spectroscopy for early detection of cervical cancer.
    Jing Y; Wang Y; Wang X; Song C; Ma J; Xie Y; Fei Y; Zhang Q; Mi L
    J Biophotonics; 2018 May; 11(5):e201700245. PubMed ID: 29205885
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy.
    Zheng W; Kou SS; Sheppard CJR; Roy M
    Biomed Opt Express; 2023 Jul; 14(7):3433-3445. PubMed ID: 37497495
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Computed optical interferometric tomography for high-speed volumetric cellular imaging.
    Liu YZ; Shemonski ND; Adie SG; Ahmad A; Bower AJ; Carney PS; Boppart SA
    Biomed Opt Express; 2014 Sep; 5(9):2988-3000. PubMed ID: 25401012
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Biological Characteristics of Cervical Precancerous Cell Proliferation.
    Liu Y; Cao C; Zhai P; Zhang Y
    Open Med (Wars); 2019; 14():362-368. PubMed ID: 31157301
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bichromatic tetraphasic full-field optical coherence microscopy.
    Iyer RR; Žurauskas M; Rao Y; Chaney EJ; Boppart SA
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22704. PubMed ID: 38584966
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Corneal imaging with blue-light optical coherence microscopy.
    Khan S; Neuhaus K; Thaware O; Ni S; Ju MJ; Redd T; Huang D; Jian Y
    Biomed Opt Express; 2022 Sep; 13(9):5004-5014. PubMed ID: 36187260
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles.
    Sokolov K; Follen M; Aaron J; Pavlova I; Malpica A; Lotan R; Richards-Kortum R
    Cancer Res; 2003 May; 63(9):1999-2004. PubMed ID: 12727808
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Volumetric optical coherence microscopy with a high space-bandwidth-
    Liu S; Mulligan JA; Adie SG
    Biomed Opt Express; 2018 Jul; 9(7):3137-3152. PubMed ID: 29984088
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of a multimodal mobile colposcope for real-time cervical cancer detection.
    Coole JB; Brenes D; Possati-Resende JC; Antoniazzi M; Fonseca BO; Maker Y; Kortum A; Vohra IS; Schwarz RA; Carns J; Borba Souza KC; Vidigal Santana IV; Kreitchmann R; Salcedo MP; Ramanujam N; Schmeler KM; Richards-Kortum R
    Biomed Opt Express; 2022 Oct; 13(10):5116-5130. PubMed ID: 36425643
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Rapid, high-resolution, non-destructive assessments of metabolic and morphological homogeneity uniquely identify high-grade cervical precancerous lesions.
    Polleys CM; Singh P; Thieu HT; Genega EM; Jahanseir N; Zuckerman AL; Díaz FR; Patra A; Beheshti A; Georgakoudi I
    bioRxiv; 2024 May; ():. PubMed ID: 38798665
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cervix Type and Cervical Cancer Classification System Using Deep Learning Techniques.
    Habtemariam LW; Zewde ET; Simegn GL
    Med Devices (Auckl); 2022; 15():163-176. PubMed ID: 35734419
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P; Lenaphet Y; Widjaja J
    Appl Opt; 2021 Mar; 60(7):2069-2076. PubMed ID: 33690300
    [TBL] [Abstract][Full Text] [Related]  

  • 95. In vivo three-dimensional imaging of plants with optical coherence microscopy.
    Reeves A; Parsons RL; Hettinger JW; Medford JI
    J Microsc; 2002 Dec; 208(Pt 3):177-89. PubMed ID: 12460449
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy.
    Iyer RR; Žurauskas M; Cui Q; Gao L; Theodore Smith R; Boppart SA
    Biomed Opt Express; 2020 Oct; 11(10):5903-5919. PubMed ID: 33149995
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multimodal
    Graf BW; Boppart SA
    IEEE J Sel Top Quantum Electron; 2012 Jun; 18(4):1280-1286. PubMed ID: 25673966
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
    Marchand PJ; Bouwens A; Szlag D; Nguyen D; Descloux A; Sison M; Coquoz S; Extermann J; Lasser T
    Biomed Opt Express; 2017 Jul; 8(7):3343-3359. PubMed ID: 28717571
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    Sci Rep; 2019 Nov; 9(1):16041. PubMed ID: 31690729
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Oestrogen receptor message in premalignant and normal cervical cells: a methodological study.
    Kitchener HC; Neilson L; Macnab JC
    Eur J Cancer; 1993; 29A(2):252-5. PubMed ID: 8422290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.