These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29896383)

  • 1. Electrochemical impedance spectroscopy of single Au nanorods.
    Liu T; Li M; Wang Y; Fang Y; Wang W
    Chem Sci; 2018 May; 9(19):4424-4429. PubMed ID: 29896383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation-independent reaction activity monitoring with single particle and data analytics.
    Zhou J; Yu Pan Z; Liu H; Fei Gao P; Zhi Huang C
    J Colloid Interface Sci; 2021 May; 590():458-466. PubMed ID: 33561595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunosensing prostate-specific antigen: Faradaic vs non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device.
    Ibau C; Arshad MKM; Gopinath SCB; Nuzaihan M N M; Fathil MFM; Shamsuddin SA
    Int J Biol Macromol; 2020 Nov; 162():1924-1936. PubMed ID: 32822729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Sub-Nanometer Shift in the Scattering Centroid of Single Gold Nanorods during Electrochemical Charging.
    Liu T; Liu S; Jiang W; Wang W
    ACS Nano; 2019 Jun; 13(6):6279-6286. PubMed ID: 30995004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy.
    Zhu H; Chen Y; Yan FJ; Chen J; Tao XF; Ling J; Yang B; He QJ; Mao ZW
    Acta Biomater; 2017 Mar; 50():534-545. PubMed ID: 28027959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods.
    Ramasamy M; Ha JW
    J Phys Chem Lett; 2023 Jun; 14(25):5768-5775. PubMed ID: 37326616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Accurate Imaging of Collective Gold Nanorods with a Polarization-Dependent Dark-Field Light Scattering Microscope.
    Liu JJ; Wen S; Yan HH; Cheng R; Zhu F; Gao PF; Zou HY; Huang CZ; Wang J
    Anal Chem; 2023 Jan; 95(2):1169-1175. PubMed ID: 36541029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-coated Core-Shell Gold Nanorods as Multifunctional Orientation Sensors in Differential Interference Contrast Microscopy.
    Kim GW; Ha JW
    Anal Sci; 2017; 33(9):1021-1025. PubMed ID: 28890485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-modulated optical property of gold nanorods for sensitive and colorimetric detection of thiourea in fruit juice.
    Zou BQ; Zhang HZ; Fu Z; Zhan T; Wang J
    Talanta; 2021 Apr; 225():121965. PubMed ID: 33592719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors.
    Niu B; Jiang W; Jiang B; Lv M; Wang S; Wang W
    Nat Commun; 2022 Apr; 13(1):2316. PubMed ID: 35484125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Aspect Ratio of a Gold-Nanorod-Modified Screen-Printed Carbon Electrode for Carbaryl Detection in Three Different Samples of Vegetables.
    Wahyuni WT; Putra BR; Rahman HA; Ivandini TA; Irkham ; Khalil M; Rahmawati I
    ACS Omega; 2024 Jan; 9(1):1497-1515. PubMed ID: 38239286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy.
    Norlin A; Pan J; Leygraf C
    Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the optical properties of single palladium-coated core-shell gold nanorods as multifunctional orientation probes.
    Lee SY; Ha JW
    Phys Chem Chem Phys; 2016 Dec; 18(48):32682-32685. PubMed ID: 27896350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells.
    Alizar YY; Ramasamy M; Kim GW; Ha JW
    JACS Au; 2023 Nov; 3(11):3247-3258. PubMed ID: 38034978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Particle Spectroelectrochemistry: Promoting the Electrocatalytic Activity of Gold Nanorods via Oxygen Plasma Treatment without Structural Deformation.
    Ramasamy M; Ha JW
    Anal Chem; 2024 Jan; 96(2):737-745. PubMed ID: 38175953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-particle spectroscopy and defocused imaging of anisotropic gold nanorods by total internal reflection scattering microscopy.
    Lee J; Kim GW; Ha JW
    Analyst; 2020 Sep; 145(18):6038-6044. PubMed ID: 32749393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.