BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29896389)

  • 1. A porous, electrically conductive hexa-zirconium(iv) metal-organic framework.
    Goswami S; Ray D; Otake KI; Kung CW; Garibay SJ; Islamoglu T; Atilgan A; Cui Y; Cramer CJ; Farha OK; Hupp JT
    Chem Sci; 2018 May; 9(19):4477-4482. PubMed ID: 29896389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic "Conductive Glass" Approach to Rendering Mesoporous Metal-Organic Frameworks Electronically Conductive and Chemically Responsive.
    Kung CW; Platero-Prats AE; Drout RJ; Kang J; Wang TC; Audu CO; Hersam MC; Chapman KW; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30532-30540. PubMed ID: 30113802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive.
    Wang TC; Hod I; Audu CO; Vermeulen NA; Nguyen ST; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12584-12591. PubMed ID: 28319365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical conductivity through π-π stacking in a two-dimensional porous gallium catecholate metal-organic framework.
    Skorupskii G; Chanteux G; Le KN; Stassen I; Hendon CH; Dincă M
    Ann N Y Acad Sci; 2022 Dec; 1518(1):226-230. PubMed ID: 36183322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal-organic frameworks.
    Zhang S; Panda DK; Yadav A; Zhou W; Saha S
    Chem Sci; 2021 Oct; 12(40):13379-13391. PubMed ID: 34777756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From a Collapse-Prone, Insulating Ni-MOF-74 Analogue to Crystalline, Porous, and Electrically Conducting PEDOT@MOF Composites.
    Zhang S; Zhang W; Yadav A; Baker J; Saha S
    Inorg Chem; 2023 Nov; 62(46):18999-19005. PubMed ID: 37934947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing.
    Chen YC; Chiang WH; Kurniawan D; Yeh PC; Otake KI; Kung CW
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35319-35326. PubMed ID: 31423762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-organic Frameworks in Semiconductor Devices.
    Parashar RK; Jash P; Zharnikov M; Mondal PC
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202317413. PubMed ID: 38252076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal-organic framework.
    Souto M; Calbo J; Mañas-Valero S; Walsh A; Mínguez Espallargas G
    Beilstein J Nanotechnol; 2019; 10():1883-1893. PubMed ID: 31598454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Built-in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C
    Liu L; Meng H; Chai Y; Chen X; Xu J; Liu X; Liu W; Guldi DM; Zhu Y
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202217897. PubMed ID: 36639933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor-Acceptor Interaction.
    Xu X; Yue Y; Xin G; Huang N
    Macromol Rapid Commun; 2023 Jun; 44(11):e2200715. PubMed ID: 36333909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Conductive Porous Metal-Organic Frameworks.
    Sun L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3566-79. PubMed ID: 26749063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.
    Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Redox Conductivity within a Metal-Organic Framework Material.
    Goswami S; Hod I; Duan JD; Kung CW; Rimoldi M; Malliakas CD; Palmer RH; Farha OK; Hupp JT
    J Am Chem Soc; 2019 Nov; 141(44):17696-17702. PubMed ID: 31608628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-Conductive Cerium-Based Metal-Organic Frameworks.
    Ho WH; Li SC; Wang YC; Chang TE; Chiang YT; Li YP; Kung CW
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55358-55366. PubMed ID: 34757712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Properties of Bimetallic Metal-Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity.
    Dolgopolova EA; Brandt AJ; Ejegbavwo OA; Duke AS; Maddumapatabandi TD; Galhenage RP; Larson BW; Reid OG; Ammal SC; Heyden A; Chandrashekhar M; Stavila V; Chen DA; Shustova NB
    J Am Chem Soc; 2017 Apr; 139(14):5201-5209. PubMed ID: 28316244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.