These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29896599)

  • 1. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands.
    Deng N; Cui D; Zhang BW; Xia J; Cruz J; Levy R
    Phys Chem Chem Phys; 2018 Jun; 20(25):17081-17092. PubMed ID: 29896599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites.
    Cruz J; Wickstrom L; Yang D; Gallicchio E; Deng N
    J Chem Theory Comput; 2020 Apr; 16(4):2803-2813. PubMed ID: 32101691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy.
    Deng NJ; Zhang P; Cieplak P; Lai L
    J Phys Chem B; 2011 Oct; 115(41):11902-10. PubMed ID: 21899337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations.
    Clark F; Robb G; Cole DJ; Michel J
    J Chem Theory Comput; 2023 Jun; 19(12):3686-3704. PubMed ID: 37285579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Molecular Dynamics Free Energy Simulation to Compute Binding Affinities of DNA G-Quadruplex Ligands.
    Deng N
    Methods Mol Biol; 2019; 2035():177-199. PubMed ID: 31444750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a Single Decoupling Alchemical Approach for the Calculation of the Absolute Binding Free Energies of Protein-Peptide Complexes.
    Kilburg D; Gallicchio E
    Front Mol Biosci; 2018; 5():22. PubMed ID: 29568737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of protein-ligand binding free energy by using a polarizable potential.
    Jiao D; Golubkov PA; Darden TA; Ren P
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6290-5. PubMed ID: 18427113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanded Ensemble Methods Can be Used to Accurately Predict Protein-Ligand Relative Binding Free Energies.
    Zhang S; Hahn DF; Shirts MR; Voelz VA
    J Chem Theory Comput; 2021 Oct; 17(10):6536-6547. PubMed ID: 34516130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
    Song LF; Bansal N; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1013-1026. PubMed ID: 30143917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Generalized Born Model Accuracy for Absolute Binding Free Energy Calculations.
    Zeller F; Zacharias M
    J Phys Chem B; 2014 Jul; 118(27):7467-7474. PubMed ID: 24941018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA.
    Baginski M; Fogolari F; Briggs JM
    J Mol Biol; 1997 Nov; 274(2):253-67. PubMed ID: 9398531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes.
    Miranda WE; Noskov SY; Valiente PA
    J Chem Inf Model; 2015 Sep; 55(9):1867-77. PubMed ID: 26180998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses.
    Sakae Y; Zhang BW; Levy RM; Deng N
    J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.