BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29896700)

  • 41. Assessing the impact of antiviral drugs commonly utilized during the COVID-19 pandemic on the embryonic development of Xenopus laevis.
    Laçin C; Turhan DO; Güngördü A
    J Hazard Mater; 2024 Jul; 472():134462. PubMed ID: 38718506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular Responses in Drosophila melanogaster Following Teratogen Exposure.
    Bianchini MC; Portela JLR; Puntel RL; Ávila DS
    Methods Mol Biol; 2018; 1797():243-276. PubMed ID: 29896697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of fluoride on Xenopus embryo development.
    Goh EH; Neff AW
    Food Chem Toxicol; 2003 Nov; 41(11):1501-8. PubMed ID: 12963002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis.
    Smutná M; Priebojová J; Večerková J; Hilscherová K
    Ecotoxicol Environ Saf; 2017 Apr; 138():32-38. PubMed ID: 27992848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Developmental malformation of frog embryos: an analysis of teratogenicity of chemical mixtures.
    Shirazi MA; Dawson DA
    Arch Environ Contam Toxicol; 1991 Aug; 21(2):177-82. PubMed ID: 1958073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase III interlaboratory study of FETAX. Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system.
    Bantle JA; Finch RA; Fort DJ; Stover EL; Hull M; Kumsher-King M; Gaudet-Hull AM
    J Appl Toxicol; 1999; 19(6):447-72. PubMed ID: 10547627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos.
    Chae JP; Park MS; Hwang YS; Min BH; Kim SH; Lee HS; Park MJ
    Chemosphere; 2015 Feb; 120():52-8. PubMed ID: 24992311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the teratogenicity of the selective ß3-adrenoceptor agonist, CL 316.243 hydrate by employing FETAX (frog embryo teratogenesis assay).
    Boga A; Sertdemir Y; Dogan A
    Drug Chem Toxicol; 2017 Jan; 40(1):7-12. PubMed ID: 27063898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of nonylphenols on embryonic development and metamorphosis of Xenopus laevis: FETAX and amphibian metamorphosis toxicity test (OECD TG231).
    Xu Y; Park SJ; Gye MC
    Environ Res; 2019 Jul; 174():14-23. PubMed ID: 31022611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental toxicity, uptake and distribution of sodium chromate assayed by frog embryo teratogenesis assay-Xenopus(FETAX).
    Bosisio S; Fortaner S; Bellinetto S; Farina M; Del Torchio R; Prati M; Gornati R; Bernardini G; Sabbioni E
    Sci Total Environ; 2009 Sep; 407(18):5039-45. PubMed ID: 19540565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maternal exposure to Cd(II) causes malformations of Xenopus laevis embryos.
    Kotyzova D; Sundeman FW
    Ann Clin Lab Sci; 1998; 28(4):224-35. PubMed ID: 9715349
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Teratogenicity of cobalt chloride in Xenopus laevis, assayed by the FETAX procedure.
    Plowman MC; Peracha H; Hopfer SM; Sunderman FW
    Teratog Carcinog Mutagen; 1991; 11(2):83-92. PubMed ID: 1686677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PCNB exposure during early embryogenic development induces developmental delay and teratogenicity by altering the gene expression in Xenopus laevis.
    Ismail T; Lee H; Kim Y; Ryu HY; Cho DH; Ryoo ZY; Lee DS; Kwon TK; Park TJ; Kwon T; Lee HS
    Environ Toxicol; 2023 Jan; 38(1):216-224. PubMed ID: 36218123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the developmental toxicity of nicotine and cotinine with frog embryo teratogenesis assay: Xenopus.
    Dawson DA; Fort DJ; Smith GJ; Newell DL; Bantle JA
    Teratog Carcinog Mutagen; 1988; 8(6):329-38. PubMed ID: 2905544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of two factorial designs, a complete 3 x 3 factorial and a central composite rotatable design, for use in binomial response experiments in aquatic toxicology.
    Edginton AN; Sheridan PM; Boermans HJ; Thompson DG; Holt JD; Stephenson GR
    Arch Environ Contam Toxicol; 2004 Feb; 46(2):216-23. PubMed ID: 15106673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay--Xenopus (FETAX).
    Dawson DA; Bantle JA
    J Appl Toxicol; 1987 Aug; 7(4):237-44. PubMed ID: 3624783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The implications of low-affinity AhR for TCDD insensitivity in frogs.
    Elskus AA
    Toxicol Sci; 2005 Nov; 88(1):1-3. PubMed ID: 16270410
    [No Abstract]   [Full Text] [Related]  

  • 58. Developmental toxicity testing with FETAX: evaluation of five compounds.
    Dawson DA; Fort DJ; Newell DL; Bantle JA
    Drug Chem Toxicol; 1989 Mar; 12(1):67-75. PubMed ID: 2714209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds.
    Selderslaghs IW; Blust R; Witters HE
    Reprod Toxicol; 2012 Apr; 33(2):142-54. PubMed ID: 21871558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Teratogenic potential of atrazine and 2,4-D using FETAX.
    Morgan MK; Scheuerman PR; Bishop CS; Pyles RA
    J Toxicol Environ Health; 1996 Jun; 48(2):151-68. PubMed ID: 8642623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.