These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 2989673)

  • 21. Nicotinamide adenine dinucleotide -- independent formate dehydrogenase in Mycobacterium phlei.
    Deyhle RR; Barton LL
    Can J Microbiol; 1977 Feb; 23(2):125-30. PubMed ID: 13920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What is the essential proton-translocating molecular machinery in cytochrome oxidase?
    Wikström M; Casey RP
    J Inorg Biochem; 1985; 23(3-4):327-34. PubMed ID: 2410564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Potential activity of methane and ammonia oxidation by methanotropic communities from soda lakes of the southern Transbaikal].
    Khmelenina VN; Eshinimaev BTs; Kaliuzhnaia MG; Trotsenko IuA
    Mikrobiologiia; 2000; 69(4):553-8. PubMed ID: 11008692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria.
    Jiang QQ; Bakken LR
    Appl Environ Microbiol; 1999 Jun; 65(6):2679-84. PubMed ID: 10347060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron and proton transfers through quinones and cytochrome bc complexes.
    Rich PR
    Biochim Biophys Acta; 1984 Apr; 768(1):53-79. PubMed ID: 6322844
    [No Abstract]   [Full Text] [Related]  

  • 26. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):285-95. PubMed ID: 4599093
    [No Abstract]   [Full Text] [Related]  

  • 27. Proton release in photosynthetic water oxidation: evidence for proton movement in a restricted domain.
    Baker GM; Bhatnagar D; Dilley RA
    Biochemistry; 1981 Apr; 20(8):2307-15. PubMed ID: 7236602
    [No Abstract]   [Full Text] [Related]  

  • 28. Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus.
    Eccleston M; Kelly DP
    J Gen Microbiol; 1973 Mar; 75(1):211-21. PubMed ID: 4722562
    [No Abstract]   [Full Text] [Related]  

  • 29. The interrelation of the two c-type cytochromes in Rhodopseudomonas sphaeroides photosynthesis.
    Wood PM
    Biochem J; 1980 Nov; 192(2):761-4. PubMed ID: 6263260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetics of C1-compound metabolism.
    Van Verseveld HW; Thauer RK
    Antonie Van Leeuwenhoek; 1987; 53(1):37-45. PubMed ID: 3314701
    [No Abstract]   [Full Text] [Related]  

  • 31. [Growth of the "tetraedron" budding bacterium on monocarbon compounds].
    Namsaraev BB; Zavarzin GA
    Mikrobiologiia; 1974; 43(3):406-9. PubMed ID: 4848845
    [No Abstract]   [Full Text] [Related]  

  • 32. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.
    Powell CL; Nogaro G; Agrawal A
    Biodegradation; 2011 Jun; 22(3):527-38. PubMed ID: 20957410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The potential ability of the microflora of lowland marshes to use combustible gases].
    Namsaraev BB; Zavarzin GA
    Mikrobiologiia; 1974 Mar; 43(2):338-42. PubMed ID: 4828751
    [No Abstract]   [Full Text] [Related]  

  • 34. Alternative hypotheses of proton ejection in cytochrome oxidase vesicles. Transmembrane proton pumping or redox-linked deprotonation of phospholipid-cytochrome c complex(es).
    Mitchell P; Moyle J
    FEBS Lett; 1983 Jan; 151(2):167-78. PubMed ID: 6299782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture.
    Harwood JH; Pirt SJ
    J Appl Bacteriol; 1972 Dec; 35(4):597-607. PubMed ID: 4651256
    [No Abstract]   [Full Text] [Related]  

  • 36. Screening methane-oxidizing bacteria from municipal solid waste landfills and simulating their effects on methane and ammonia reduction.
    Pan J; Wang X; Cao A; Zhao G; Zhou C
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37082-37091. PubMed ID: 31745784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.
    Law Y; Ni BJ; Lant P; Yuan Z
    Water Res; 2012 Jun; 46(10):3409-19. PubMed ID: 22520859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton pumps in bacterial photosynthesis.
    Crofts AR; Crowther D; Celis H; De Celis SA; Tierney G
    Biochem Soc Trans; 1977; 5(2):491-5. PubMed ID: 20371
    [No Abstract]   [Full Text] [Related]  

  • 39. Electron and proton transport in Rhodospirillum rubrum chromatophores.
    Kakuno T; Hosoi K; Higuti T; Horio T
    J Biochem; 1973 Dec; 74(6):1193-203. PubMed ID: 4360811
    [No Abstract]   [Full Text] [Related]  

  • 40. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.