BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29896965)

  • 1. Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass.
    Pathiraja D; Lee S; Choi IG
    J Agric Food Chem; 2018 Jul; 66(26):6814-6821. PubMed ID: 29896965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Two-Step Process Utilizing a Single Enzyme for the Production of High-Titer 3,6-Anhydro-l-galactose from Agarose Derived from Red Macroalgae.
    Kim DH; Yun EJ; Lee SH; Kim KH
    J Agric Food Chem; 2018 Nov; 66(46):12249-12256. PubMed ID: 30354118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars.
    Yun EJ; Yu S; Kim KH
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5581-5589. PubMed ID: 28656380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides.
    Kim JH; Yun EJ; Yu S; Kim KH; Kang NJ
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29053566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Agarolytic Pathways in a Marine Bacterium,
    Yu S; Yun EJ; Kim DH; Park SY; Kim KH
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924614
    [No Abstract]   [Full Text] [Related]  

  • 6. NADP
    Tsevelkhorloo M; Kim SH; Kang DK; Lee CR; Hong SK
    J Microbiol Biotechnol; 2021 May; 31(5):756-763. PubMed ID: 33820885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and expression of a new α-neoagarobiose hydrolase from Agarivorans gilvus WH0801 and enzymatic production of 3,6-anhydro-l-galactose.
    Liu N; Yang M; Mao X; Mu B; Wei D
    Biotechnol Appl Biochem; 2016; 63(2):230-7. PubMed ID: 25676340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced catalytic efficiency of endo-β-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis.
    Alkotaini B; Han NS; Kim BS
    Enzyme Microb Technol; 2016 Nov; 93-94():142-149. PubMed ID: 27702474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers.
    Lee CH; Kim HT; Yun EJ; Lee AR; Kim SR; Kim JH; Choi IG; Kim KH
    Appl Environ Microbiol; 2014 Oct; 80(19):5965-73. PubMed ID: 25038102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar.
    Alkotaini B; Han NS; Kim BS
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1573-1580. PubMed ID: 27888333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coimmobilization of β-Agarase and α-Neoagarobiose Hydrolase for Enhancing the Production of 3,6-Anhydro-l-galactose.
    Wang Q; Sun J; Liu Z; Huang W; Xue C; Mao X
    J Agric Food Chem; 2018 Jul; 66(27):7087-7095. PubMed ID: 29893561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities.
    Yun EJ; Lee S; Kim JH; Kim BB; Kim HT; Lee SH; Pelton JG; Kang NJ; Choi IG; Kim KH
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2961-70. PubMed ID: 22678025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7.
    Asghar S; Lee CR; Park JS; Chi WJ; Kang DK; Hong SK
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8855-8866. PubMed ID: 30128580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal β-galactosidases for producing high-titer 3,6-anhydro-L-galactose from red-algal agarobiose.
    Kim DH; Park SY; Kim KH
    Appl Microbiol Biotechnol; 2022 Dec; 106(24):8111-8120. PubMed ID: 36399167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Agarolytic Pathway in a Terrestrial Bacterium
    Li G; Guo R; Wu S; Cheng S; Li J; Liu Z; Xie W; Sun X; Zhang Q; Li Z; Xu J; Wu J; Wei Z; Hu F
    Front Microbiol; 2022; 13():828687. PubMed ID: 35432256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products.
    Jiang C; Liu Z; Cheng D; Mao X
    Biotechnol Adv; 2020 Dec; 45():107641. PubMed ID: 33035614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-L-galactosidase specific for neoagarobiose hydrolysis into monosaccharides.
    Jang WY; Kwon MJ; Kim KY; Kim YH
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4621-4634. PubMed ID: 34057561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agar degradation by microorganisms and agar-degrading enzymes.
    Chi WJ; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2012 May; 94(4):917-30. PubMed ID: 22526785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trienzymatic Complex System for Isomerization of Agar-Derived d-Galactose into d-Tagatose as a Low-Calorie Sweetener.
    Jeong DW; Hyeon JE; Shin SK; Han SO
    J Agric Food Chem; 2020 Mar; 68(10):3195-3202. PubMed ID: 32075368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.
    Yun EJ; Yu S; Kim S; Kim KH
    J Biotechnol; 2018 Mar; 270():12-20. PubMed ID: 29408675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.