These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 29897242)
1. Short Oligopeptides for Biocompatible and Biodegradable Supramolecular Hydrogels. Restu WK; Nishida Y; Yamamoto S; Ishii J; Maruyama T Langmuir; 2018 Jul; 34(27):8065-8074. PubMed ID: 29897242 [TBL] [Abstract][Full Text] [Related]
2. Hydrogel formation by short D-peptide for cell-culture scaffolds. Restu WK; Yamamoto S; Nishida Y; Ienaga H; Aoi T; Maruyama T Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110746. PubMed ID: 32279773 [TBL] [Abstract][Full Text] [Related]
3. New Synthesis Route of Hydrogel through A Bioinspired Supramolecular Approach: Gelation, Binding Interaction, and in Vitro Dressing. Cheng C; Tang MC; Wu CS; Simon T; Ko FH ACS Appl Mater Interfaces; 2015 Sep; 7(34):19306-15. PubMed ID: 26271338 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Huang J; Hastings CL; Duffy GP; Kelly HM; Raeburn J; Adams DJ; Heise A Biomacromolecules; 2013 Jan; 14(1):200-6. PubMed ID: 23190093 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Garcia AM; Lavendomme R; Kralj S; Kurbasic M; Bellotto O; Cringoli MC; Semeraro S; Bandiera A; De Zorzi R; Marchesan S Chemistry; 2020 Feb; 26(8):1880-1886. PubMed ID: 31868256 [TBL] [Abstract][Full Text] [Related]
6. Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior. Chiang PR; Lin TY; Tsai HC; Chen HL; Liu SY; Chen FR; Hwang YS; Chu IM Langmuir; 2013 Dec; 29(51):15981-91. PubMed ID: 24328368 [TBL] [Abstract][Full Text] [Related]
7. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
8. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Ryan DM; Doran TM; Anderson SB; Nilsson BL Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic Khan S; Minhas MU; Ahmad M; Sohail M J Biomater Sci Polym Ed; 2018 Jan; 29(1):1-34. PubMed ID: 29059021 [TBL] [Abstract][Full Text] [Related]
10. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Abraham BL; Liyanage W; Nilsson BL Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849 [TBL] [Abstract][Full Text] [Related]
12. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent gel to gel transformation of a peptide based supramolecular gelator. Baral A; Basak S; Basu K; Dehsorkhi A; Hamley IW; Banerjee A Soft Matter; 2015 Jun; 11(24):4944-51. PubMed ID: 26016677 [TBL] [Abstract][Full Text] [Related]
14. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters! Iglesias D; Melle-Franco M; Kurbasic M; Melchionna M; Abrami M; Grassi M; Prato M; Marchesan S ACS Nano; 2018 Jun; 12(6):5530-5538. PubMed ID: 29787672 [TBL] [Abstract][Full Text] [Related]
15. Formation of hybrid hydrogels consisting of tripeptide and different silver nanoparticle-capped ligands: modulation of the mechanical strength of gel phase materials. Nanda J; Adhikari B; Basak S; Banerjee A J Phys Chem B; 2012 Oct; 116(40):12235-44. PubMed ID: 22962848 [TBL] [Abstract][Full Text] [Related]
16. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
17. Antigen-Antibody Interaction-Based Self-Healing Capability of Hybrid Hydrogels Composed of Genetically Engineered Filamentous Viruses and Gold Nanoparticles. Sawada T; Serizawa T Protein Pept Lett; 2018; 25(1):64-67. PubMed ID: 29237366 [TBL] [Abstract][Full Text] [Related]
18. Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea. Kimura S; Haraya N; Komiyama T; Yokoya M; Yamanaka M Chem Pharm Bull (Tokyo); 2021; 69(11):1131-1135. PubMed ID: 34719596 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel-Sol Transition. Tsutsumi N; Ito A; Ishigamori A; Ikeda M; Izumi M; Ochi R Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668410 [TBL] [Abstract][Full Text] [Related]
20. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. Abraham BL; Agredo P; Mensah SG; Nilsson BL Langmuir; 2022 Dec; 38(50):15494-15505. PubMed ID: 36473193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]