These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29897321)

  • 1. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
    Gupta S; Pawar S; Ramrakhiyani N; Palshikar GK; Varma V
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):212. PubMed ID: 29897321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
    Cocos A; Fiks AG; Masino AJ
    J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network.
    Jiang K; Zhang D; Bernard GR
    Stud Health Technol Inform; 2022 Jun; 290():767-771. PubMed ID: 35673121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting adversarial transfer learning for adverse drug reaction detection from texts.
    Li Z; Yang Z; Luo L; Xiang Y; Lin H
    J Biomed Inform; 2020 Jun; 106():103431. PubMed ID: 32335225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes.
    Pourreza Shahri M; Kahanda I
    BMC Bioinformatics; 2021 Oct; 22(1):500. PubMed ID: 34656098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM.
    Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY
    Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing social media data for pharmacovigilance: A review.
    Sarker A; Ginn R; Nikfarjam A; O'Connor K; Smith K; Jayaraman S; Upadhaya T; Gonzalez G
    J Biomed Inform; 2015 Apr; 54():202-12. PubMed ID: 25720841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels.
    Tiftikci M; Özgür A; He Y; Hur J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 21):707. PubMed ID: 31865904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology.
    Emadzadeh E; Sarker A; Nikfarjam A; Gonzalez G
    AMIA Annu Symp Proc; 2017; 2017():679-688. PubMed ID: 29854133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter.
    Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.