BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29897321)

  • 1. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
    Gupta S; Pawar S; Ramrakhiyani N; Palshikar GK; Varma V
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):212. PubMed ID: 29897321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
    Cocos A; Fiks AG; Masino AJ
    J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network.
    Jiang K; Zhang D; Bernard GR
    Stud Health Technol Inform; 2022 Jun; 290():767-771. PubMed ID: 35673121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting adversarial transfer learning for adverse drug reaction detection from texts.
    Li Z; Yang Z; Luo L; Xiang Y; Lin H
    J Biomed Inform; 2020 Jun; 106():103431. PubMed ID: 32335225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes.
    Pourreza Shahri M; Kahanda I
    BMC Bioinformatics; 2021 Oct; 22(1):500. PubMed ID: 34656098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM.
    Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY
    Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing social media data for pharmacovigilance: A review.
    Sarker A; Ginn R; Nikfarjam A; O'Connor K; Smith K; Jayaraman S; Upadhaya T; Gonzalez G
    J Biomed Inform; 2015 Apr; 54():202-12. PubMed ID: 25720841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels.
    Tiftikci M; Özgür A; He Y; Hur J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 21):707. PubMed ID: 31865904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology.
    Emadzadeh E; Sarker A; Nikfarjam A; Gonzalez G
    AMIA Annu Symp Proc; 2017; 2017():679-688. PubMed ID: 29854133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter.
    Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.