These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29897322)

  • 1. A systematic approach to identify therapeutic effects of natural products based on human metabolite information.
    Noh K; Yoo S; Lee D
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):205. PubMed ID: 29897322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotype-oriented network analysis for discovering pharmacological effects of natural compounds.
    Yoo S; Nam H; Lee D
    Sci Rep; 2018 Aug; 8(1):11667. PubMed ID: 30076354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing candidate diseases-related metabolites based on literature and functional similarity.
    Wang Y; Juan L; Peng J; Zang T; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):574. PubMed ID: 31760947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation.
    Zhang X; Liu T; Fan X; Ai N
    J Mol Graph Model; 2017 Aug; 75():347-354. PubMed ID: 28628860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repositioning for enzyme modulator based on human metabolite-likeness.
    Lee YH; Choi H; Park S; Lee B; Yi GS
    BMC Bioinformatics; 2017 May; 18(Suppl 7):226. PubMed ID: 28617219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products.
    Cockroft NT; Cheng X; Fuchs JR
    J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.
    Fang J; Wu Z; Cai C; Wang Q; Tang Y; Cheng F
    J Chem Inf Model; 2017 Nov; 57(11):2657-2671. PubMed ID: 28956927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks.
    Olivon F; Allard PM; Koval A; Righi D; Genta-Jouve G; Neyts J; Apel C; Pannecouque C; Nothias LF; Cachet X; Marcourt L; Roussi F; Katanaev VL; Touboul D; Wolfender JL; Litaudon M
    ACS Chem Biol; 2017 Oct; 12(10):2644-2651. PubMed ID: 28829118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of bioactive natural products by structure activity relationship.
    Zhou X; Li Y; Chen X
    J Mol Graph Model; 2010 Aug; 29(1):38-45. PubMed ID: 20488738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying diseases-related metabolites using random walk.
    Hu Y; Zhao T; Zhang N; Zang T; Zhang J; Cheng L
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):116. PubMed ID: 29671398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Theoretical Models to Study Natural Products with Antiprotozoal Activity.
    Herrera-Rueda MA; Navarrete-Vázquez G; Aguirre-Crespo F; Maldonado-Velazquez MG; Vergara-Galicia J; Canul HC; Garcia-Mera X; Prado-Prado FJ
    Curr Drug Targets; 2017; 18(5):605-616. PubMed ID: 28017125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural product discovery: past, present, and future.
    Katz L; Baltz RH
    J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):155-76. PubMed ID: 26739136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.
    Egieyeh SA; Syce J; Malan SF; Christoffels A
    Malar J; 2016 Jan; 15():50. PubMed ID: 26823078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of compound-target interactions of natural products using large-scale drug and protein information.
    Keum J; Yoo S; Lee D; Nam H
    BMC Bioinformatics; 2016 Jul; 17 Suppl 6(Suppl 6):219. PubMed ID: 27490208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Privileged Scaffold Analysis of Natural Products with Deep Learning-based Indication Prediction Model.
    Lai J; Hu J; Wang Y; Zhou X; Li Y; Zhang L; Liu Z
    Mol Inform; 2020 Nov; 39(11):e2000057. PubMed ID: 32406179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomics: a tool for anticancer lead-finding from natural products.
    Kim HK; Wilson EG; Choi YH; Verpoorte R
    Planta Med; 2010 Aug; 76(11):1094-102. PubMed ID: 20486069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules.
    Chen Y; Stork C; Hirte S; Kirchmair J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.