These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29897341)

  • 1. Core/shell CuO/Al nanorod thermite film based on electrochemical anodization.
    Yu C; Zhang W; Hu B; Ni D; Zheng Z; Liu J; Ma K; Ren W
    Nanotechnology; 2018 Sep; 29(36):36LT02. PubMed ID: 29897341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Preparation and Energetic Characteristics of the Core/Shell CoFe
    Yu C; Ren W; Wu G; Zhang W; Hu B; Ni D; Zheng Z; Ma K; Ye J; Zhu C
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Ni and NiO Interface Layer on the Energy Performance of Core/Shell CuO/Al Systems.
    Chen J; Ren W; Hu B; Zheng Z; Chen Y; Chen J; Yu C; Song C; Wang J; Zhang W
    Langmuir; 2020 Nov; 36(43):12858-12865. PubMed ID: 33103434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of process parameters on energetic properties of sputter-deposited Al/CuO reactive multilayers.
    Singh V; Julien B; Salvagnac L; Pelloquin S; Hungria T; Josse C; Belhaj M; Rossi C
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35914514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of the 3DOM Al/Co
    Zheng Z; Zhang W; Yu C; Zheng G; Ma K; Qin Z; Ye J; Chao Y
    RSC Adv; 2018 Jan; 8(5):2552-2560. PubMed ID: 35541495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition.
    Dai J; Wang C; Wang Y; Xu W; Xu J; Shen Y; Zhang W; Ye Y; Shen R
    Nanotechnology; 2020 May; 31(19):195712. PubMed ID: 31978923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuO/Cu core/shell nanostructured photoconductive devices by hot water treatment and high pressure sputtering techniques.
    Al-Mayalee KH; Badraddin E; Watanabe F; Karabacak T
    Nanotechnology; 2020 Feb; 31(9):095204. PubMed ID: 31739297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously Altering the Energy Release and Promoting the Adhesive Force of an Electrophoretic Energetic Film with a Fluoropolymer.
    Yin Y; Dong Y; Li M; Ma Z
    Langmuir; 2022 Mar; 38(8):2569-2575. PubMed ID: 35175063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Scale Insights into the First Reaction Stages Prior to Al/CuO Nanothermite Ignition: Influence of Porosity.
    Jabraoui H; Esteve A; Schoenitz M; Dreizin EL; Rossi C
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29451-29461. PubMed ID: 35699731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.
    Lanthony C; Guiltat M; Ducéré JM; Verdier A; Hémeryck A; Djafari-Rouhani M; Rossi C; Chabal YJ; Estève A
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15086-97. PubMed ID: 25089744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Interfacial Reaction of Nano Al/CuO Energetic Films through Thermal Analysis and Ab Initio Molecular Dynamics Simulation.
    Shi A; Zheng H; Chen Z; Zhang W; Zhou X; Rossi C; Shen R; Ye Y
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of core-shell structure KClO
    Yang F; Kang X; Luo J; Yi Z; Tang Y
    Sci Rep; 2017 Jun; 7(1):3730. PubMed ID: 28623365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Fabrication of Energetic Nanocomposite Materials by Polydopamine.
    Song Z; Liu W; Xian M; Jin M
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors.
    Park S; Kim S; Sun GJ; In Lee W; Kim KK; Lee C
    Nanoscale Res Lett; 2014; 9(1):638. PubMed ID: 25489289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al.
    Zheng G; Zhang W; Shen R; Ye J; Qin Z; Chao Y
    Sci Rep; 2016 Mar; 6():22588. PubMed ID: 26935405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuO/ZnO Heterojunction Nanorod Arrays Prepared by Photochemical Method with Improved UV Detecting Performance.
    Li J; Zhao T; M Shirolkar M; Li M; Wang H; Li H
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31126059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precisely Controlled Reactive Multilayer Films with Excellent Energy Release Property for Laser-Induced Ignition.
    Guo W; Chang S; Cao J; Wu L; Shen R; Ye Y
    Nanoscale Res Lett; 2019 Aug; 14(1):301. PubMed ID: 31468257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Synthesized MEMS Compatible Energetic Arrays Based on Energetic Coordination Polymer and Nano-Al with Tunable Properties.
    Ma X; Cao K; Huang X; Yang S; Ye Y; Shen R; Yang G; Zhang K
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30740-30749. PubMed ID: 32517465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap initiation with 20.35 mm: an initiator integrating the Al/CuO
    Ni D; Yu G; Shi S; Xu D; Chu E; Yu C; Zhen Z; Zhang W
    R Soc Open Sci; 2019 May; 6(5):181686. PubMed ID: 31218024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.