These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29897348)
1. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors. Sun J; Zhao Y; Yang Z; Shen J; Cabrera E; Lertola MJ; Yang W; Zhang D; Benatar A; Castro JM; Wu D; Lee LJ Nanotechnology; 2018 Aug; 29(35):355304. PubMed ID: 29897348 [TBL] [Abstract][Full Text] [Related]
2. Wearable Strain Sensors Based on a Porous Polydimethylsiloxane Hybrid with Carbon Nanotubes and Graphene. He Y; Wu D; Zhou M; Zheng Y; Wang T; Lu C; Zhang L; Liu H; Liu C ACS Appl Mater Interfaces; 2021 Apr; 13(13):15572-15583. PubMed ID: 33760608 [TBL] [Abstract][Full Text] [Related]
3. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734 [TBL] [Abstract][Full Text] [Related]
4. Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. Paul SJ; Elizabeth I; Gupta BK ACS Appl Mater Interfaces; 2021 Feb; 13(7):8871-8879. PubMed ID: 33588524 [TBL] [Abstract][Full Text] [Related]
5. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique. Fu X; Al-Jumaily AM; Ramos M; Meshkinzar A; Huang X J Biomater Sci Polym Ed; 2019 Sep; 30(13):1227-1241. PubMed ID: 31154936 [TBL] [Abstract][Full Text] [Related]
6. Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chen M; Tao T; Zhang L; Gao W; Li C Chem Commun (Camb); 2013 Feb; 49(16):1612-4. PubMed ID: 23334065 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Lee J; Pyo S; Kwon DS; Jo E; Kim W; Kim J Small; 2019 Mar; 15(12):e1805120. PubMed ID: 30748123 [TBL] [Abstract][Full Text] [Related]
8. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972 [TBL] [Abstract][Full Text] [Related]
9. Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silane-Modified MWCNTs. Wu Z; Jin Y; Li G; Zhang M; Du J Macromol Rapid Commun; 2022 Feb; 43(4):e2100663. PubMed ID: 34822206 [TBL] [Abstract][Full Text] [Related]
10. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Wang S; Zhang X; Wu X; Lu C Soft Matter; 2016 Jan; 12(3):845-52. PubMed ID: 26542376 [TBL] [Abstract][Full Text] [Related]
11. Strain and Pressure Sensors Based on MWCNT/PDMS for Human Motion/Perception Detection. Zhao X; Mei D; Tang G; Zhao C; Wang J; Luo M; Li L; Wang Y Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987168 [TBL] [Abstract][Full Text] [Related]
12. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360 [TBL] [Abstract][Full Text] [Related]
13. Wide-Range Motion Recognition Through Insole Sensor Using Multi-Walled Carbon Nanotubes and Polydimethylsiloxane Composites. Heo JS; Soleymanpour R; Lam J; Goldberg D; Large E; Park SK; Kim I IEEE J Biomed Health Inform; 2022 Feb; 26(2):581-588. PubMed ID: 34255638 [TBL] [Abstract][Full Text] [Related]
14. Ultraconformable Capacitive Strain Sensor Utilizing Network Structure of Single-Walled Carbon Nanotubes for Wireless Body Sensing. Okada K; Horii T; Yamaguchi Y; Son K; Hosoya N; Maeda S; Fujie T ACS Appl Mater Interfaces; 2024 Feb; 16(8):10427-10438. PubMed ID: 38375854 [TBL] [Abstract][Full Text] [Related]
15. A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection. Zhang P; Chen Y; Li Y; Zhang Y; Zhang J; Huang L Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093154 [TBL] [Abstract][Full Text] [Related]
16. A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Chen C; Yang C; Li S; Li D Carbohydr Polym; 2015 Dec; 134():309-13. PubMed ID: 26428129 [TBL] [Abstract][Full Text] [Related]
17. Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors. Jin ZH; Liu YL; Chen JJ; Cai SL; Xu JQ; Huang WH Anal Chem; 2017 Feb; 89(3):2032-2038. PubMed ID: 28029034 [TBL] [Abstract][Full Text] [Related]
18. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722 [TBL] [Abstract][Full Text] [Related]
19. A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite. Luo M; Zhang Y; Luo Y; Lu J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577282 [TBL] [Abstract][Full Text] [Related]
20. Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors. Cai Y; Shen J; Dai Z; Zang X; Dong Q; Guan G; Li LJ; Huang W; Dong X Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]