These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29897349)

  • 21. Experimental Validation of Quantum Steering Ellipsoids and Tests of Volume Monogamy Relations.
    Zhang C; Cheng S; Li L; Liang QY; Liu BH; Huang YF; Li CF; Guo GC; Hall MJW; Wiseman HM; Pryde GJ
    Phys Rev Lett; 2019 Feb; 122(7):070402. PubMed ID: 30848627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.
    Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE
    Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.
    Chen MC; Wu D; Su ZE; Cai XD; Wang XL; Yang T; Li L; Liu NL; Lu CY; Pan JW
    Phys Rev Lett; 2016 Feb; 116(7):070502. PubMed ID: 26943520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of an optimal witness for unknown two-qubit entanglement.
    Park HS; Lee SS; Kim H; Choi SK; Sim HS
    Phys Rev Lett; 2010 Dec; 105(23):230404. PubMed ID: 21231433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
    De Greve K; McMahon PL; Yu L; Pelc JS; Jones C; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nat Commun; 2013; 4():2228. PubMed ID: 23887066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters.
    Trebbia JB; Deplano Q; Tamarat P; Lounis B
    Nat Commun; 2022 May; 13(1):2962. PubMed ID: 35618729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear monogamy of entanglement in three-qubit systems.
    Liu F; Gao F; Wen QY
    Sci Rep; 2015 Nov; 5():16745. PubMed ID: 26568265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental classical entanglement in a 16 acoustic qubit-analogue.
    Hasan MA; Runge K; Deymier PA
    Sci Rep; 2021 Dec; 11(1):24248. PubMed ID: 34931009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanophotonic rare-earth quantum memory with optically controlled retrieval.
    Zhong T; Kindem JM; Bartholomew JG; Rochman J; Craiciu I; Miyazono E; Bettinelli M; Cavalli E; Verma V; Nam SW; Marsili F; Shaw MD; Beyer AD; Faraon A
    Science; 2017 Sep; 357(6358):1392-1395. PubMed ID: 28860208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entanglement of quantum emitters interacting through an ultra-thin noble metal nanodisk.
    Karanikolas V
    Opt Express; 2020 Aug; 28(16):24171-24184. PubMed ID: 32752401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation.
    López-Saldívar JA; Castaños O; Nahmad-Achar E; López-Peña R; Man'ko MA; Man'ko VI
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects.
    Krauter H; Muschik CA; Jensen K; Wasilewski W; Petersen JM; Cirac JI; Polzik ES
    Phys Rev Lett; 2011 Aug; 107(8):080503. PubMed ID: 21929153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable entanglement and polarization phase gate in coupled double quantum-well structures.
    Yang WX; Lee RK
    Opt Express; 2008 Oct; 16(22):17161-70. PubMed ID: 18957997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions.
    Zheng H; Baranger HU
    Phys Rev Lett; 2013 Mar; 110(11):113601. PubMed ID: 25166530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entanglement of remote atomic qubits.
    Matsukevich DN; Chanelière T; Jenkins SD; Lan SY; Kennedy TA; Kuzmich A
    Phys Rev Lett; 2006 Jan; 96(3):030405. PubMed ID: 16486672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable gaussian-qubit interface for extremal quantum state engineering.
    Adesso G; Campbell S; Illuminati F; Paternostro M
    Phys Rev Lett; 2010 Jun; 104(24):240501. PubMed ID: 20867288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting information from qubit-environment correlations.
    Reina JH; Susa CE; Fanchini FF
    Sci Rep; 2014 Dec; 4():7443. PubMed ID: 25517102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Networks with Chiral-Light-Matter Interaction in Waveguides.
    Mahmoodian S; Lodahl P; Sørensen AS
    Phys Rev Lett; 2016 Dec; 117(24):240501. PubMed ID: 28009207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator.
    Imany P; Jaramillo-Villegas JA; Odele OD; Han K; Leaird DE; Lukens JM; Lougovski P; Qi M; Weiner AM
    Opt Express; 2018 Jan; 26(2):1825-1840. PubMed ID: 29401906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.
    Shulman MD; Dial OE; Harvey SP; Bluhm H; Umansky V; Yacoby A
    Science; 2012 Apr; 336(6078):202-5. PubMed ID: 22499942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.