These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29897408)

  • 1. Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity.
    Tewarie P; Hunt BAE; O'Neill GC; Byrne A; Aquino K; Bauer M; Mullinger KJ; Coombes S; Brookes MJ
    Cereb Cortex; 2019 Jun; 29(6):2668-2681. PubMed ID: 29897408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations.
    Cabral J; Luckhoo H; Woolrich M; Joensson M; Mohseni H; Baker A; Kringelbach ML; Deco G
    Neuroimage; 2014 Apr; 90():423-35. PubMed ID: 24321555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest.
    Nakagawa TT; Woolrich M; Luckhoo H; Joensson M; Mohseni H; Kringelbach ML; Jirsa V; Deco G
    Neuroimage; 2014 Feb; 87():383-94. PubMed ID: 24246492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease.
    Núñez P; Poza J; Gómez C; Rodríguez-González V; Hillebrand A; Tola-Arribas MA; Cano M; Hornero R
    J Neural Eng; 2019 Sep; 16(5):056030. PubMed ID: 31112938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of different measures of functional connectivity using a neural mass model.
    David O; Cosmelli D; Friston KJ
    Neuroimage; 2004 Feb; 21(2):659-73. PubMed ID: 14980568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range temporal correlations and scaling behavior in human brain oscillations.
    Linkenkaer-Hansen K; Nikouline VV; Palva JM; Ilmoniemi RJ
    J Neurosci; 2001 Feb; 21(4):1370-7. PubMed ID: 11160408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity.
    Fukushima M; Sporns O
    PLoS Comput Biol; 2018 Sep; 14(9):e1006497. PubMed ID: 30252835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.
    Zhu Y; Liu J; Ye C; Mathiak K; Astikainen P; Ristaniemi T; Cong F
    Neuroimage; 2020 Sep; 218():116924. PubMed ID: 32445878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity.
    Tewarie P; Liuzzi L; O'Neill GC; Quinn AJ; Griffa A; Woolrich MW; Stam CJ; Hillebrand A; Brookes MJ
    Neuroimage; 2019 Oct; 200():38-50. PubMed ID: 31207339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of local network oscillations in resting-state functional connectivity.
    Cabral J; Hugues E; Sporns O; Deco G
    Neuroimage; 2011 Jul; 57(1):130-139. PubMed ID: 21511044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear coupling in the human motor system.
    Chen CC; Kilner JM; Friston KJ; Kiebel SJ; Jolly RK; Ward NS
    J Neurosci; 2010 Jun; 30(25):8393-9. PubMed ID: 20573886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations.
    Florin E; Baillet S
    Neuroimage; 2015 May; 111():26-35. PubMed ID: 25680519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks.
    Krishnan GP; González OC; Bazhenov M
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6858-6863. PubMed ID: 29884650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-sensitive reconfiguration of corticocortical 6-20 Hz oscillatory coherence in naturalistic human performance.
    Saarinen T; Jalava A; Kujala J; Stevenson C; Salmelin R
    Hum Brain Mapp; 2015 Jul; 36(7):2455-69. PubMed ID: 25760689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits.
    Dumont G; Gutkin B
    PLoS Comput Biol; 2019 May; 15(5):e1007019. PubMed ID: 31071085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks.
    Abeysuriya RG; Hadida J; Sotiropoulos SN; Jbabdi S; Becker R; Hunt BAE; Brookes MJ; Woolrich MW
    PLoS Comput Biol; 2018 Feb; 14(2):e1006007. PubMed ID: 29474352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.