BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 29897410)

  • 1. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
    Song J; Wang Y; Li F; Akutsu T; Rawlings ND; Webb GI; Chou KC
    Brief Bioinform; 2019 Mar; 20(2):638-658. PubMed ID: 29897410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
    Li F; Wang Y; Li C; Marquez-Lago TT; Leier A; Rawlings ND; Haffari G; Revote J; Akutsu T; Chou KC; Purcell AW; Pike RN; Webb GI; Ian Smith A; Lithgow T; Daly RJ; Whisstock JC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2150-2166. PubMed ID: 30184176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Proteolysis in Complex Proteomes Using Deep Learning.
    Ozols M; Eckersley A; Platt CI; Stewart-McGuinness C; Hibbert SA; Revote J; Li F; Griffiths CEM; Watson REB; Song J; Bell M; Sherratt MJ
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProsperousPlus: a one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction.
    Li F; Wang C; Guo X; Akutsu T; Webb GI; Coin LJM; Kurgan L; Song J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37874948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets.
    Wang M; Zhao XM; Tan H; Akutsu T; Whisstock JC; Song J
    Bioinformatics; 2014 Jan; 30(1):71-80. PubMed ID: 24149049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features.
    Singh O; Su EC
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):478. PubMed ID: 28155640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and design of protease enzyme specificity using a structure-aware graph convolutional network.
    Lu C; Lubin JH; Sarma VV; Stentz SZ; Wang G; Wang S; Khare SD
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2303590120. PubMed ID: 37729196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
    duVerle DA; Mamitsuka H
    Methods Mol Biol; 2019; 1915():121-147. PubMed ID: 30617801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling the Extended Cleavage Specificity of the House Dust Mite Protease Allergens Der p 1, Der p 3 and Der p 6 for the Prediction of New Cell Surface Protein Substrates.
    Jacquet A; Campisi V; Szpakowska M; Dumez ME; Galleni M; Chevigné A
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28654001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Structural Susceptibility of Proteins to Proteolytic Processing.
    Matveev EV; Safronov VV; Ponomarev GV; Kazanov MD
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.
    Pethe MA; Rubenstein AB; Khare SD
    J Mol Biol; 2017 Jan; 429(2):220-236. PubMed ID: 27932294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Proteases Involved in Peptide Generation.
    Casteleiro MA; Stevens R; Klein J
    Methods Mol Biol; 2017; 1574():205-213. PubMed ID: 28315253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward more accurate prediction of caspase cleavage sites: a comprehensive review of current methods, tools and features.
    Bao Y; Marini S; Tamura T; Kamada M; Maegawa S; Hosokawa H; Song J; Akutsu T
    Brief Bioinform; 2019 Sep; 20(5):1669-1684. PubMed ID: 29860277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
    Zhou J; Li S; Leung KK; O'Donovan B; Zou JY; DeRisi JL; Wells JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25464-25475. PubMed ID: 32973096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.