BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 29897410)

  • 21. A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells.
    Kim C; Oh YJ
    Methods Mol Biol; 2017; 1598():229-245. PubMed ID: 28508364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Proteasix Ontology.
    Arguello Casteleiro M; Klein J; Stevens R
    J Biomed Semantics; 2016 Jun; 7(1):33. PubMed ID: 27259807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multi-factor model for caspase degradome prediction.
    Wee LJ; Tong JC; Tan TW; Ranganathan S
    BMC Genomics; 2009 Dec; 10 Suppl 3(Suppl 3):S6. PubMed ID: 19958504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries.
    Demir F; Kuppusamy M; Perrar A; Huesgen PF
    Methods Mol Biol; 2022; 2447():159-174. PubMed ID: 35583780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation.
    Rawlings ND
    Biochimie; 2016 Mar; 122():5-30. PubMed ID: 26455268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive models of protease specificity based on quantitative protease-activity profiling data.
    Fedonin GG; Eroshkin A; Cieplak P; Matveev EV; Ponomarev GV; Gelfand MS; Ratnikov BI; Kazanov MD
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140253. PubMed ID: 31330204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein cleavage site with feature selection by random forest.
    Li BQ; Cai YD; Feng KY; Zhao GJ
    PLoS One; 2012; 7(9):e45854. PubMed ID: 23029276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
    Li F; Chen J; Leier A; Marquez-Lago T; Liu Q; Wang Y; Revote J; Smith AI; Akutsu T; Webb GI; Kurgan L; Song J
    Bioinformatics; 2020 Feb; 36(4):1057-1065. PubMed ID: 31566664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting HIV-1 Protease Cleavage Sites With Positive-Unlabeled Learning.
    Li Z; Hu L; Tang Z; Zhao C
    Front Genet; 2021; 12():658078. PubMed ID: 33868387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of protease substrates using sequence and structure features.
    Barkan DT; Hostetter DR; Mahrus S; Pieper U; Wells JA; Craik CS; Sali A
    Bioinformatics; 2010 Jul; 26(14):1714-22. PubMed ID: 20505003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence.
    Fan YX; Pan X; Zhang Y; Shen HB
    Methods Mol Biol; 2019; 1915():111-120. PubMed ID: 30617800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DeepDigest: Prediction of Protein Proteolytic Digestion with Deep Learning.
    Yang J; Gao Z; Ren X; Sheng J; Xu P; Chang C; Fu Y
    Anal Chem; 2021 Apr; 93(15):6094-6103. PubMed ID: 33826301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calpain cleavage prediction using multiple kernel learning.
    DuVerle DA; Ono Y; Sorimachi H; Mamitsuka H
    PLoS One; 2011 May; 6(5):e19035. PubMed ID: 21559271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.