These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29897447)

  • 1. A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics.
    Powers JD; Williams CD; Regnier M; Daniel TL
    Integr Comp Biol; 2018 Aug; 58(2):186-193. PubMed ID: 29897447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness.
    Powers JD; Bianco P; Pertici I; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2020 Jan; 598(2):331-345. PubMed ID: 31786814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanical model of the half-sarcomere which includes the contribution of titin.
    Pertici I; Caremani M; Reconditi M
    J Muscle Res Cell Motil; 2019 Mar; 40(1):29-41. PubMed ID: 30900059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier.
    Squarci C; Bianco P; Reconditi M; Pertici I; Caremani M; Narayanan T; Horváth ÁI; Málnási-Csizmadia A; Linari M; Lombardi V; Piazzesi G
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219346120. PubMed ID: 36812205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming.
    Spierts IL; Akster HA; Granzier HL
    J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Titan but not necessarily a ruler: assessing the role of titin during thick filament patterning and assembly.
    Myhre JL; Pilgrim D
    Anat Rec (Hoboken); 2014 Sep; 297(9):1604-14. PubMed ID: 25125174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin.
    Bennett PM; Hodkin TE; Hawkins C
    J Struct Biol; 1997 Oct; 120(1):93-104. PubMed ID: 9356297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy.
    Brynnel A; Hernandez Y; Kiss B; Lindqvist J; Adler M; Kolb J; van der Pijl R; Gohlke J; Strom J; Smith J; Ottenheijm C; Granzier HL
    Elife; 2018 Dec; 7():. PubMed ID: 30565562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological functions of the giant elastic protein titin in mammalian striated muscle.
    Fukuda N; Granzier HL; Ishiwata S; Kurihara S
    J Physiol Sci; 2008 Jun; 58(3):151-9. PubMed ID: 18477421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.
    Rassier DE
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C134-C145. PubMed ID: 28539306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titin Gene and Protein Functions in Passive and Active Muscle.
    Linke WA
    Annu Rev Physiol; 2018 Feb; 80():389-411. PubMed ID: 29131758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation.
    Nishikawa K
    J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation.
    Heidlauf T; Klotz T; Rode C; Siebert T; Röhrle O
    PLoS Comput Biol; 2017 Oct; 13(10):e1005773. PubMed ID: 28968385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eccentric muscle contraction potentiates titin stiffness-related contractile properties in rat fast-twitch muscles.
    Shi J; Watanabe D; Wada M
    J Appl Physiol (1985); 2022 Sep; 133(3):710-720. PubMed ID: 35981734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits of titin extension in single cardiac myofibrils.
    Linke WA; Bartoo ML; Ivemeyer M; Pollack GH
    J Muscle Res Cell Motil; 1996 Aug; 17(4):425-38. PubMed ID: 8884598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive force generation and titin isoforms in mammalian skeletal muscle.
    Horowits R
    Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.