BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29897478)

  • 21. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea.
    Kuzmenko A; Yudin D; Ryazansky S; Kulbachinskiy A; Aravin AA
    Nucleic Acids Res; 2019 Jun; 47(11):5822-5836. PubMed ID: 31114878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage.
    Dang DT; Phan AT
    Sci Rep; 2019 May; 9(1):7432. PubMed ID: 31092834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA.
    Koopal B; Potocnik A; Mutte SK; Aparicio-Maldonado C; Lindhoud S; Vervoort JJM; Brouns SJJ; Swarts DC
    Cell; 2022 Apr; 185(9):1471-1486.e19. PubMed ID: 35381200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Highly Structured RNA by Cooperative Action of siRNAs and Helper Antisense Oligomers in Living Cells.
    Dutkiewicz M; Ojdowska A; Kuczynski J; Lindig V; Zeichhardt H; Kurreck J; Ciesiołka J
    PLoS One; 2015; 10(8):e0136395. PubMed ID: 26308932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA recognition by an RNA-guided bacterial Argonaute.
    Doxzen KW; Doudna JA
    PLoS One; 2017; 12(5):e0177097. PubMed ID: 28520746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral genome.
    Tanaka Y; Shimoike T; Ishii K; Suzuki R; Suzuki T; Ushijima H; Matsuura Y; Miyamura T
    Virology; 2000 Apr; 270(1):229-36. PubMed ID: 10772995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prokaryotic Argonaute nuclease cooperates with co-encoded RNase to acquire guide RNAs and target invader DNA.
    Agapov A; Panteleev V; Kropocheva E; Kanevskaya A; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2024 Jun; 52(10):5895-5911. PubMed ID: 38716875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the structure of long single-stranded DNA fragments with neocarzinostatin chromophore. Extension of the base-catalyzed bulge-specific reaction.
    Stassinopoulos A; Goldberg IH
    Biochemistry; 1995 Nov; 34(46):15359-74. PubMed ID: 7578152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme.
    Cairns MJ; Hopkins TM; Witherington C; Sun LQ
    Antisense Nucleic Acid Drug Dev; 2000 Oct; 10(5):323-32. PubMed ID: 11079572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An L-RNA Aptamer that Binds and Inhibits RNase.
    Olea C; Weidmann J; Dawson PE; Joyce GF
    Chem Biol; 2015 Nov; 22(11):1437-1441. PubMed ID: 26590636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
    Dong F; Allawi HT; Anderson T; Neri BP; Lyamichev VI
    Nucleic Acids Res; 2001 Aug; 29(15):3248-57. PubMed ID: 11470883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNase mitochondrial RNA processing cleaves RNA from the rat mitochondrial displacement loop at the origin of heavy-strand DNA replication.
    Tullo A; Rossmanith W; Imre EM; Sbisà E; Saccone C; Karwan RM
    Eur J Biochem; 1995 Feb; 227(3):657-62. PubMed ID: 7532584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity of hepatitis C virus RNA to the antiviral enzyme ribonuclease L is determined by a subset of efficient cleavage sites.
    Han JQ; Wroblewski G; Xu Z; Silverman RH; Barton DJ
    J Interferon Cytokine Res; 2004 Nov; 24(11):664-76. PubMed ID: 15684820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase.
    Wu J; Samara NL; Kuraoka I; Yang W
    Mol Cell; 2019 Oct; 76(1):44-56.e3. PubMed ID: 31444105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition.
    Klum SM; Chandradoss SD; Schirle NT; Joo C; MacRae IJ
    EMBO J; 2018 Jan; 37(1):75-88. PubMed ID: 28939659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleic acid sequence analysis using DNAzymes.
    Cairns MJ; Sun LQ
    Methods Mol Biol; 2004; 252():291-302. PubMed ID: 15017058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional analyses reveal the contributions of the C- and N-lobes of Argonaute protein to selectivity of RNA target cleavage.
    Dayeh DM; Kruithoff BC; Nakanishi K
    J Biol Chem; 2018 Apr; 293(17):6308-6325. PubMed ID: 29519815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA cleavage by the 10-23 DNA enzyme.
    Joyce GF
    Methods Enzymol; 2001; 341():503-17. PubMed ID: 11582801
    [No Abstract]   [Full Text] [Related]  

  • 39. In vivo SELEX of single-stranded domains in the HIV-1 leader RNA.
    van Bel N; Das AT; Berkhout B
    J Virol; 2014 Feb; 88(4):1870-80. PubMed ID: 24335293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural characterization of DNA and RNA sequences recognized by the gene 5 protein of bacteriophage fd.
    Oliver AW; Kneale GG
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):525-31. PubMed ID: 10215589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.