BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29897491)

  • 1. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat.
    Wu H; Shabala L; Azzarello E; Huang Y; Pandolfi C; Su N; Wu Q; Cai S; Bazihizina N; Wang L; Zhou M; Mancuso S; Chen Z; Shabala S
    J Exp Bot; 2018 Jul; 69(16):3987-4001. PubMed ID: 29897491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root vacuolar Na
    Wu H; Shabala L; Zhou M; Su N; Wu Q; Ul-Haq T; Zhu J; Mancuso S; Azzarello E; Shabala S
    Plant J; 2019 Oct; 100(1):55-67. PubMed ID: 31148333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods.
    Cuin TA; Bose J; Stefano G; Jha D; Tester M; Mancuso S; Shabala S
    Plant Cell Environ; 2011 Jun; 34(6):947-961. PubMed ID: 21342209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking salinity stress tolerance with tissue-specific Na(+) sequestration in wheat roots.
    Wu H; Shabala L; Liu X; Azzarello E; Zhou M; Pandolfi C; Chen ZH; Bose J; Mancuso S; Shabala S
    Front Plant Sci; 2015; 6():71. PubMed ID: 25750644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.
    Byrt CS; Xu B; Krishnan M; Lightfoot DJ; Athman A; Jacobs AK; Watson-Haigh NS; Plett D; Munns R; Tester M; Gilliham M
    Plant J; 2014 Nov; 80(3):516-26. PubMed ID: 25158883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing Essentiality of
    Shahzad B; Shabala L; Zhou M; Venkataraman G; Solis CA; Page D; Chen ZH; Shabala S
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance.
    Wu H; Shabala L; Zhou M; Shabala S
    Plant Cell Physiol; 2014 Oct; 55(10):1749-62. PubMed ID: 25104542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley.
    Wu H; Shabala L; Zhou M; Stefano G; Pandolfi C; Mancuso S; Shabala S
    Planta; 2015 Oct; 242(4):847-57. PubMed ID: 25991439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types.
    Dissanayake BM; Staudinger C; Munns R; Taylor NL; Millar AH
    J Proteomics; 2022 Mar; 256():104502. PubMed ID: 35093570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of sodium transport in durum wheat.
    Davenport R; James RA; Zakrisson-Plogander A; Tester M; Munns R
    Plant Physiol; 2005 Mar; 137(3):807-18. PubMed ID: 15734907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A root's ability to retain K+ correlates with salt tolerance in wheat.
    Cuin TA; Betts SA; Chalmandrier R; Shabala S
    J Exp Bot; 2008; 59(10):2697-706. PubMed ID: 18495637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress.
    Paul A; Mondal S; Chakraborty K; Biswas AK
    Plant Mol Biol; 2024 Mar; 114(2):24. PubMed ID: 38457044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of TaNHX3, a vacuolar Na⁺/H⁺ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes.
    Lu W; Guo C; Li X; Duan W; Ma C; Zhao M; Gu J; Du X; Liu Z; Xiao K
    Plant Physiol Biochem; 2014 Mar; 76():17-28. PubMed ID: 24448321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytological changes in Turkish durum and bread wheat genotypes in response to salt stress.
    Yumurtaci A; Aydin Y; Uncuoglu AA
    Acta Biol Hung; 2009 Jun; 60(2):221-32. PubMed ID: 19584031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium-induced decrease in cytosolic Na
    Gul M; Wakeel A; Steffens D; Lindberg S
    Plant Biol (Stuttg); 2019 Sep; 21(5):825-831. PubMed ID: 31034750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.
    James RA; Blake C; Byrt CS; Munns R
    J Exp Bot; 2011 May; 62(8):2939-47. PubMed ID: 21357768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat.
    Cuin TA; Zhou M; Parsons D; Shabala S
    Plant Biol (Stuttg); 2012 May; 14(3):438-46. PubMed ID: 22117736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress.
    Genc Y; Oldach K; Verbyla AP; Lott G; Hassan M; Tester M; Wallwork H; McDonald GK
    Theor Appl Genet; 2010 Sep; 121(5):877-94. PubMed ID: 20490443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat.
    James RA; Munns R; von Caemmerer S; Trejo C; Miller C; Condon TA
    Plant Cell Environ; 2006 Dec; 29(12):2185-97. PubMed ID: 17081251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall.
    Tang X; Zhang H; Shabala S; Li H; Yang X; Zhang H
    Tree Physiol; 2021 Jul; 41(7):1264-1277. PubMed ID: 33367891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.