These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29897738)

  • 1. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria.
    Dutta D; Belashov IA; Wedekind JE
    Biochemistry; 2018 Aug; 57(31):4620-4628. PubMed ID: 29897738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of preQ
    Warnasooriya C; Ling C; Belashov IA; Salim M; Wedekind JE; Ermolenko DN
    RNA Biol; 2019 Sep; 16(9):1086-1092. PubMed ID: 30328747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold.
    Liberman JA; Salim M; Krucinska J; Wedekind JE
    Nat Chem Biol; 2013 Jun; 9(6):353-5. PubMed ID: 23584677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conscious uncoupling of riboswitch functions.
    Kierzek E; Kierzek R
    J Biol Chem; 2020 Feb; 295(9):2568-2569. PubMed ID: 32111719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants for ligand capture by a class II preQ1 riboswitch.
    Kang M; Eichhorn CD; Feigon J
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E663-71. PubMed ID: 24469808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A translational riboswitch coordinates nascent transcription-translation coupling.
    Chatterjee S; Chauvier A; Dandpat SS; Artsimovitch I; Walter NG
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
    Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE
    Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemical probe based on the PreQ
    Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS
    Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch.
    You M; Litke JL; Jaffrey SR
    Proc Natl Acad Sci U S A; 2015 May; 112(21):E2756-65. PubMed ID: 25964329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ITC analysis of ligand binding to preQ₁ riboswitches.
    Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE
    Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation.
    Schroeder GM; Dutta D; Cavender CE; Jenkins JL; Pritchett EM; Baker CD; Ashton JM; Mathews DH; Wedekind JE
    Nucleic Acids Res; 2020 Aug; 48(14):8146-8164. PubMed ID: 32597951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning a riboswitch response through structural extension of a pseudoknot.
    Soulière MF; Altman RB; Schwarz V; Haller A; Blanchard SC; Micura R
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):E3256-64. PubMed ID: 23940363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent riboswitch-controlled biosensors for the genome scale analysis of metabolic pathways.
    Michaud A; Garneau D; Côté JP; Lafontaine DA
    Sci Rep; 2024 May; 14(1):12555. PubMed ID: 38821978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ
    Neuner E; Frener M; Lusser A; Micura R
    RNA Biol; 2018; 15(10):1376-1383. PubMed ID: 30332908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.