These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29897764)

  • 1. Interfacial Lewis Acid-Base Adduct Formation Probed by Vibrational Spectroscopy.
    Patrow JG; Wang Y; Dawlaty JM
    J Phys Chem Lett; 2018 Jul; 9(13):3631-3638. PubMed ID: 29897764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation Reaction Field at the Interface Measured by Vibrational Sum Frequency Generation Spectroscopy.
    Sorenson SA; Patrow JG; Dawlaty JM
    J Am Chem Soc; 2017 Feb; 139(6):2369-2378. PubMed ID: 28103437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations.
    Houghton AY; Hurmalainen J; Mansikkamäki A; Piers WE; Tuononen HM
    Nat Chem; 2014 Nov; 6(11):983-8. PubMed ID: 25343603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Spectroscopy Evidence of Weak Interactions in Frustrated Lewis Pairs Formed by Tris(pentafluorophenyl)borane.
    Marques LR; Ando RA
    Chemphyschem; 2023 Mar; 24(6):e202200715. PubMed ID: 36450662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-inductive Effect Dominates Vibrational Frequency Shifts of Conjugated Probes on Gold Electrodes.
    Lake WR; Meng J; Dawlaty JM; Lian T; Hammes-Schiffer S
    J Am Chem Soc; 2023 Oct; 145(41):22548-22554. PubMed ID: 37795975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhomogeneity of Interfacial Electric Fields at Vibrational Probes on Electrode Surfaces.
    Goldsmith ZK; Secor M; Hammes-Schiffer S
    ACS Cent Sci; 2020 Feb; 6(2):304-311. PubMed ID: 32123749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Polarization and Ionic Structure at the Ionic Liquid-Metal Interface Studied by Vibrational Spectroscopy and Molecular Dynamics Simulations.
    Voegtle MJ; Pal T; Pennathur AK; Menachekanian S; Patrow JG; Sarkar S; Cui Q; Dawlaty JM
    J Phys Chem B; 2021 Mar; 125(10):2741-2753. PubMed ID: 33689335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study.
    Bistoni G; Auer AA; Neese F
    Chemistry; 2017 Jan; 23(4):865-873. PubMed ID: 27809358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles investigation of the Lewis acid-base adduct formation at the methylammonium lead iodide surface.
    Giorgi G; Yamashita K; Segawa H
    Phys Chem Chem Phys; 2018 Apr; 20(16):11183-11195. PubMed ID: 29629450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydrogen activation by frustrated carbene-borane Lewis pairs: an experimental and theoretical study of carbene variation.
    Kronig S; Theuergarten E; Holschumacher D; Bannenberg T; Daniliuc CG; Jones PG; Tamm M
    Inorg Chem; 2011 Aug; 50(15):7344-59. PubMed ID: 21718018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic control in frustrated Lewis pair chemistry: adduct formation of intramolecular FLP systems with -P(C(6)F(5))(2) Lewis base components.
    Stute A; Kehr G; Daniliuc CG; Fröhlich R; Erker G
    Dalton Trans; 2013 Apr; 42(13):4487-99. PubMed ID: 23340589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkyl-Nitrile Adlayers as Probes of Plasmonically Induced Electric Fields.
    Kwasnieski DT; Wang H; Schultz ZD
    Chem Sci; 2015 Aug; 6(8):4484-4494. PubMed ID: 26213606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of vanadocene with a nitrile -C identical to N bond activated by a tris(fluorophenyl)borane as Lewis acid: formation of borane adducts of vanada(IV)azirine complexes--EPR evidence for an intramolecular C-F...V interaction.
    Choukroun R; Lorber C; Donnadieu B
    Chemistry; 2002 Jun; 8(12):2700-4. PubMed ID: 12391647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity in Adduct Formation of a Bidentate Boron Lewis Acid.
    Beckmann JL; Neumann B; Stammler HG; Mitzel NW
    Chemistry; 2024 May; 30(27):e202400081. PubMed ID: 38421238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structure, and reactivity of diazene adducts: isolation of iso-diazene stabilized as a borane adduct.
    Reiß F; Schulz A; Villinger A
    Chemistry; 2014 Sep; 20(37):11800-11. PubMed ID: 25059989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric Fields at Metal-Surfactant Interfaces: A Combined Vibrational Spectroscopy and Capacitance Study.
    Sarkar S; Maitra A; Banerjee S; Thoi VS; Dawlaty JM
    J Phys Chem B; 2020 Feb; 124(7):1311-1321. PubMed ID: 31985221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adducts of Donor-Functionalized Ar
    Borys AM; Clark ER
    Inorg Chem; 2017 Apr; 56(8):4623-4635. PubMed ID: 28375011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frustrated Lewis pairs derived from N-heterocyclic carbenes and Lewis acids.
    Chase PA; Gille AL; Gilbert TM; Stephan DW
    Dalton Trans; 2009 Sep; (35):7179-88. PubMed ID: 20449161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tris(pentafluorophenyl)borane as an efficient catalyst in the guanylation reaction of amines.
    Antiñolo A; Carrillo-Hermosilla F; Fernández-Galán R; Martínez-Ferrer J; Alonso-Moreno C; Bravo I; Moreno-Blázquez S; Salgado M; Villaseñor E; Albaladejo J
    Dalton Trans; 2016 Jun; 45(26):10717-29. PubMed ID: 27278089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.