BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29897818)

  • 1. Androgens induce growth of the limb skeletal muscles in a rapamycin-insensitive manner.
    Rossetti ML; Fukuda DH; Gordon BS
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R721-R729. PubMed ID: 29897818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle.
    White JP; Gao S; Puppa MJ; Sato S; Welle SL; Carson JA
    Mol Cell Endocrinol; 2013 Jan; 365(2):174-86. PubMed ID: 23116773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Castration alters protein balance after high-frequency muscle contraction.
    Steiner JL; Fukuda DH; Rossetti ML; Hoffman JR; Gordon BS
    J Appl Physiol (1985); 2017 Feb; 122(2):264-272. PubMed ID: 27909227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Androgen depletion alters the diurnal patterns to signals that regulate autophagy in the limb skeletal muscle.
    Rossetti ML; Tomko RJ; Gordon BS
    Mol Cell Biochem; 2021 Feb; 476(2):959-969. PubMed ID: 33128669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle.
    Ferey JL; Brault JJ; Smith CA; Witczak CA
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E686-94. PubMed ID: 25159322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous loss of TSC1 and DEPDC5 in skeletal and cardiac muscles produces early-onset myopathy and cardiac dysfunction associated with oxidative damage and SQSTM1/p62 accumulation.
    Cho CS; Kim Y; Park SR; Kim B; Davis C; Hwang I; Brooks SV; Lee JH; Kim M
    Autophagy; 2022 Oct; 18(10):2303-2322. PubMed ID: 34964695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced skeletal muscle insulin sensitivity after acute resistance-type exercise is upregulated by rapamycin-sensitive mTOR complex 1 inhibition.
    Kido K; Sase K; Yokokawa T; Fujita S
    Sci Rep; 2020 May; 10(1):8509. PubMed ID: 32444657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated bouts of resistance exercise attenuate mitogen-activated protein-kinase signal responses in rat skeletal muscle.
    Takegaki J; Sase K; Fujita S
    Biochem Biophys Res Commun; 2019 Nov; 520(1):73-78. PubMed ID: 31582215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spermidine is not an independent factor regulating limb muscle mass in mice following androgen deprivation.
    Gordon BS; Rossetti ML; Casero RA
    Appl Physiol Nutr Metab; 2021 May; 46(5):452-460. PubMed ID: 33125852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nandrolone decanoate modulates cell cycle regulation in functionally overloaded rat soleus muscle.
    McClung JM; Mehl KA; Thompson RW; Lowe LL; Carson JA
    Am J Physiol Regul Integr Comp Physiol; 2005 Jun; 288(6):R1543-52. PubMed ID: 15886356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion.
    Rossetti ML; Esser KA; Lee C; Tomko RJ; Eroshkin AM; Gordon BS
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E631-E645. PubMed ID: 31361545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury.
    White JP; Baltgalvis KA; Sato S; Wilson LB; Carson JA
    J Appl Physiol (1985); 2009 Nov; 107(5):1420-30. PubMed ID: 19745189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of mTORC1 differentially affects ribosome biogenesis in rat soleus muscle at the early and later stages of hindlimb unloading.
    Rozhkov SV; Sharlo KA; Shenkman BS; Mirzoev TM
    Arch Biochem Biophys; 2022 Nov; 730():109411. PubMed ID: 36155780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes.
    Fuentes EN; Einarsdottir IE; Paredes R; Hidalgo C; Valdes JA; Björnsson BT; Molina A
    Gen Comp Endocrinol; 2015 Jan; 210():96-106. PubMed ID: 25449137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient activation of mTORC1 signaling in skeletal muscle is independent of Akt1 regulation.
    Miyazaki M; Moriya N; Takemasa T
    Physiol Rep; 2020 Oct; 8(19):e14599. PubMed ID: 33038070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Supplementation Enhances the Effects of Intermittent Loading on Skeletal Muscles by Activating the mTORC1 Signaling Pathway in a Rat Model of Disuse Atrophy.
    Miyatake S; Hino K; Natsui Y; Ebisu G; Fujita S
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32906669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle.
    West DW; Baehr LM; Marcotte GR; Chason CM; Tolento L; Gomes AV; Bodine SC; Baar K
    J Physiol; 2016 Jan; 594(2):453-68. PubMed ID: 26548696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute recovery from disuse atrophy: the role of stretch-activated ion channels in the activation of anabolic signaling in skeletal muscle.
    Mirzoev TM; Tyganov SA; Petrova IO; Shenkman BS
    Am J Physiol Endocrinol Metab; 2019 Jan; 316(1):E86-E95. PubMed ID: 30457911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotine inhibits rapamycin-induced pain through activating mTORC1/S6K/IRS-1-related feedback inhibition loop.
    Li S; Guan S; Wang Y; Cheng L; Yang Q; Tian Z; Zhao M; Wang X; Feng B
    Brain Res Bull; 2019 Jul; 149():75-85. PubMed ID: 31005665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms.
    Ge Y; Wu AL; Warnes C; Liu J; Zhang C; Kawasome H; Terada N; Boppart MD; Schoenherr CJ; Chen J
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1434-44. PubMed ID: 19794149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.