These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29897879)
1. New clues into the self-assembly of Vmh2, a basidiomycota class I hydrophobin. Pennacchio A; Cicatiello P; Notomista E; Giardina P; Piscitelli A Biol Chem; 2018 Jul; 399(8):895-901. PubMed ID: 29897879 [TBL] [Abstract][Full Text] [Related]
2. Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils. Gravagnuolo AM; Longobardi S; Luchini A; Appavou MS; De Stefano L; Notomista E; Paduano L; Giardina P Biomacromolecules; 2016 Mar; 17(3):954-64. PubMed ID: 26828412 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ; Lee M; Na S Colloids Surf B Biointerfaces; 2019 Jan; 173():128-138. PubMed ID: 30278361 [TBL] [Abstract][Full Text] [Related]
4. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932 [TBL] [Abstract][Full Text] [Related]
5. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Pham CLL; Rodríguez de Francisco B; Valsecchi I; Dazzoni R; Pillé A; Lo V; Ball SR; Cappai R; Wien F; Kwan AH; Guijarro JI; Sunde M J Mol Biol; 2018 Oct; 430(20):3784-3801. PubMed ID: 30096347 [TBL] [Abstract][Full Text] [Related]
6. Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus. Longobardi S; Picone D; Ercole C; Spadaccini R; De Stefano L; Rea I; Giardina P Biomacromolecules; 2012 Mar; 13(3):743-50. PubMed ID: 22292968 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Gandier JA; Langelaan DN; Won A; O'Donnell K; Grondin JL; Spencer HL; Wong P; Tillier E; Yip C; Smith SP; Master ER Sci Rep; 2017 Apr; 7():45863. PubMed ID: 28393921 [TBL] [Abstract][Full Text] [Related]
8. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Chang HJ; Choi H; Na S Colloids Surf B Biointerfaces; 2020 Nov; 195():111269. PubMed ID: 32739772 [TBL] [Abstract][Full Text] [Related]
9. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR; Pham CLL; Lo V; Morris VK; Kwan AH; Sunde M Methods Mol Biol; 2020; 2073():55-72. PubMed ID: 31612436 [TBL] [Abstract][Full Text] [Related]
10. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK; Sunde M Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421 [TBL] [Abstract][Full Text] [Related]
11. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Macindoe I; Kwan AH; Ren Q; Morris VK; Yang W; Mackay JP; Sunde M Proc Natl Acad Sci U S A; 2012 Apr; 109(14):E804-11. PubMed ID: 22308366 [TBL] [Abstract][Full Text] [Related]
13. Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. Scholtmeijer K; de Vocht ML; Rink R; Robillard GT; Wösten HA J Biol Chem; 2009 Sep; 284(39):26309-14. PubMed ID: 19654326 [TBL] [Abstract][Full Text] [Related]
14. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q; Kwan AH; Sunde M Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. Kallio JM; Linder MB; Rouvinen J J Biol Chem; 2007 Sep; 282(39):28733-28739. PubMed ID: 17636262 [TBL] [Abstract][Full Text] [Related]
16. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. Kwan AH; Macindoe I; Vukasin PV; Morris VK; Kass I; Gupte R; Mark AE; Templeton MD; Mackay JP; Sunde M J Mol Biol; 2008 Oct; 382(3):708-20. PubMed ID: 18674544 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Vergunst KL; Kenward C; Langelaan DN Appl Microbiol Biotechnol; 2022 Dec; 106(23):7831-7843. PubMed ID: 36329133 [TBL] [Abstract][Full Text] [Related]
20. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. Lo V; I-Chun Lai J; Sunde M Adv Exp Med Biol; 2019; 1174():161-185. PubMed ID: 31713199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]