These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29898243)

  • 21. Bidentate ligation of heme analogues; novel biomimetics of peroxidase active site.
    Ashkenasy G; Margulies D; Felder CE; Shanzer A; Powers LS
    Chemistry; 2002 Sep; 8(17):4017-26. PubMed ID: 12360943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2016 Dec; 101():491-499. PubMed ID: 27826125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, synthesis and peroxidase-like activity of 3alpha-helix proteins covalently bound to heme.
    Obataya I; Kotaki T; Sakamoto S; Ueno A; Mihara H
    Bioorg Med Chem Lett; 2000 Dec; 10(24):2719-22. PubMed ID: 11133076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.
    Zion N; Friedman A; Levy N; Elbaz L
    Adv Mater; 2018 Oct; 30(41):e1800406. PubMed ID: 29682822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a tunable silk-protein scaffold.
    Rapson TD; Christley-Balcomb AM; Jackson CJ; Sutherland TD
    J Inorg Biochem; 2020 Mar; 204():110960. PubMed ID: 31865257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity.
    Nóbrega CS; Devreese B; Pauleta SR
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):411-422. PubMed ID: 29550214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Artificial Biomimetic Enzyme Analogues based on Iron(II/III) Schiff Base Complexes: An Effect of (Benz)imidazole Organic Moieties on Phenoxazinone Synthase and DNA Recognition.
    Bocian A; Szymańska M; Brykczyńska D; Kubicki M; Wałęsa-Chorab M; Roviello GN; Fik-Jaskółka MA; Gorczyński A; Patroniak V
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31480486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts.
    Lukas J; Družeta I; Kühl T
    Biol Chem; 2022 Nov; 403(11-12):1099-1105. PubMed ID: 36257922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe-N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells.
    Lu M; Wang C; Ding Y; Peng M; Zhang W; Li K; Wei W; Lin Y
    Chem Commun (Camb); 2019 Nov; 55(96):14534-14537. PubMed ID: 31740902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fe(III) complex of biuret-amide based macrocyclic ligand as peroxidase enzyme mimic.
    Panda C; Ghosh M; Panda T; Banerjee R; Sen Gupta S
    Chem Commun (Camb); 2011 Jul; 47(28):8016-8. PubMed ID: 21674085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fullerene-Based Mimics of Biocatalysts Show Remarkable Activity and Modularity.
    Gülseren G; Saylam A; Marion A; Özçubukçu S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45854-45863. PubMed ID: 34520162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites.
    Prat I; Company A; Postils V; Ribas X; Que L; Luis JM; Costas M
    Chemistry; 2013 May; 19(21):6724-38. PubMed ID: 23536410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview.
    Garg B; Bisht T; Ling YC
    Molecules; 2015 Aug; 20(8):14155-90. PubMed ID: 26248071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives.
    Cussó O; Ribas X; Costas M
    Chem Commun (Camb); 2015 Oct; 51(76):14285-98. PubMed ID: 26299813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and synthesis of alpha-helical peptides and mimetics.
    Garner J; Harding MM
    Org Biomol Chem; 2007 Nov; 5(22):3577-85. PubMed ID: 17971985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.
    Sáez-Jiménez V; Acebes S; Guallar V; Martínez AT; Ruiz-Dueñas FJ
    PLoS One; 2015; 10(4):e0124750. PubMed ID: 25923713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substitution of tyrosine for the proximal histidine ligand to the heme of prostaglandin endoperoxide synthase 2: implications for the mechanism of cyclooxygenase activation and catalysis.
    Goodwin DC; Rowlinson SW; Marnett LJ
    Biochemistry; 2000 May; 39(18):5422-32. PubMed ID: 10820014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.