BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29898282)

  • 1. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion.
    Oliviero T; Verkerk R; Dekker M
    Mol Nutr Food Res; 2018 Sep; 62(18):e1701069. PubMed ID: 29898282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables.
    Song L; Thornalley PJ
    Food Chem Toxicol; 2007 Feb; 45(2):216-24. PubMed ID: 17011103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli.
    Wu Y; Shen Y; Wu X; Zhu Y; Mupunga J; Bao W; Huang J; Mao J; Liu S; You Y
    J Agric Food Chem; 2018 Feb; 66(6):1509-1515. PubMed ID: 29357241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    Proc Nutr Soc; 2007 Feb; 66(1):69-81. PubMed ID: 17343774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables.
    Sun J; Wang Y; Pang X; Tian S; Hu Q; Li X; Liu J; Wang J; Lu Y
    Food Chem; 2021 Oct; 360():130007. PubMed ID: 33993075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli.
    Conaway CC; Getahun SM; Liebes LL; Pusateri DJ; Topham DK; Botero-Omary M; Chung FL
    Nutr Cancer; 2000; 38(2):168-78. PubMed ID: 11525594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review.
    Nugrahedi PY; Verkerk R; Widianarko B; Dekker M
    Crit Rev Food Sci Nutr; 2015; 55(6):823-38. PubMed ID: 24915330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brassica vegetables as sources of epithionitriles: Novel secondary products formed during cooking.
    Hanschen FS; Kaufmann M; Kupke F; Hackl T; Kroh LW; Rohn S; Schreiner M
    Food Chem; 2018 Apr; 245():564-569. PubMed ID: 29287410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosinolates: bioavailability and importance to health.
    Johnson IT
    Int J Vitam Nutr Res; 2002 Jan; 72(1):26-31. PubMed ID: 11887749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context.
    Wieczorek MN; Walczak M; Skrzypczak-Zielińska M; Jeleń HH
    Crit Rev Food Sci Nutr; 2018; 58(18):3130-3140. PubMed ID: 28718657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC).
    Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G
    Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally induced degradation of aliphatic glucosinolates: identification of intermediary breakdown products and proposed degradation pathways.
    Hanschen FS; Bauer A; Mewis I; Keil C; Schreiner M; Rohn S; Kroh LW
    J Agric Food Chem; 2012 Oct; 60(39):9890-9. PubMed ID: 22958137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile Compounds of Selected Raw and Cooked
    Wieczorek MN; Jeleń HH
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678255
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    Br J Nutr; 2007 Apr; 97(4):644-52. PubMed ID: 17349076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model.
    Martínez-Castro J; de Haro-Bailón A; Obregón-Cano S; García Magdaleno IM; Moreno Ortega A; Cámara-Martos F
    Food Res Int; 2023 Apr; 166():112598. PubMed ID: 36914324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion.
    Abellán Á; Domínguez-Perles R; García-Viguera C; Moreno DA
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolate-derived amine formation in Brassica oleracea vegetables.
    Andernach L; Witzel K; Hanschen FS
    Food Chem; 2023 Mar; 405(Pt B):134907. PubMed ID: 36417803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives.
    Ngo SNT; Williams DB
    Anticancer Agents Med Chem; 2021; 21(11):1413-1430. PubMed ID: 32972351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different processing methods on induction of quinone reductase by dietary broccoli in rats.
    Hwang ES; Jeffery EH
    J Med Food; 2004; 7(1):95-9. PubMed ID: 15117560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.