These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29898518)
1. Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils. Douglas RK; Nawar S; Cipullo S; Alamar MC; Coulon F; Mouazen AM Sci Total Environ; 2018 Jun; 626():1108-1120. PubMed ID: 29898518 [TBL] [Abstract][Full Text] [Related]
2. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Douglas RK; Nawar S; Alamar MC; Mouazen AM; Coulon F Sci Total Environ; 2018 Mar; 616-617():147-155. PubMed ID: 29127788 [TBL] [Abstract][Full Text] [Related]
3. The application of a handheld mid-infrared spectrometry for rapid measurement of oil contamination in agricultural sites. Douglas RK; Nawar S; Alamar MC; Coulon F; Mouazen AM Sci Total Environ; 2019 May; 665():253-261. PubMed ID: 30772556 [TBL] [Abstract][Full Text] [Related]
4. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Nawar S; Mouazen AM Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29064411 [TBL] [Abstract][Full Text] [Related]
5. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy. Xu S; Shi X; Wang M; Zhao Y PLoS One; 2016; 11(3):e0151536. PubMed ID: 26974821 [TBL] [Abstract][Full Text] [Related]
6. Determination of petroleum hydrocarbon contamination in soil using VNIR DRS and PLSR modeling. Olatunde KA Heliyon; 2021 Apr; 7(4):e06794. PubMed ID: 33898850 [TBL] [Abstract][Full Text] [Related]
7. Predicting total petroleum hydrocarbons in field soils with Vis-NIR models developed on laboratory-constructed samples. Wijewardane NK; Ge Y; Sihota N; Hoelen T; Miao T; Weindorf DC J Environ Qual; 2020 Jul; 49(4):847-857. PubMed ID: 33016494 [TBL] [Abstract][Full Text] [Related]
8. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Liu J; Han J; Xie J; Wang H; Tong W; Ba Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117639. PubMed ID: 31610465 [TBL] [Abstract][Full Text] [Related]
9. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy. Chakraborty S; Weindorf DC; Zhu Y; Li B; Morgan CL; Ge Y; Galbraith J J Environ Monit; 2012 Nov; 14(11):2886-92. PubMed ID: 22986574 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Two Portable Hyperspectral-Sensor-Based Instruments to Predict Key Soil Properties in Canadian Soils. Dhawale NM; Adamchuk VI; Prasher SO; Rossel RAV; Ismail AA Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408171 [TBL] [Abstract][Full Text] [Related]
11. Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction-gas chromatography. Okparanma RN; Coulon F; Mouazen AM Environ Pollut; 2014 Jan; 184():298-305. PubMed ID: 24077341 [TBL] [Abstract][Full Text] [Related]
12. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy. Chakraborty S; Weindorf DC; Morgan CL; Ge Y; Galbraith JM; Li B; Kahlon CS J Environ Qual; 2010; 39(4):1378-87. PubMed ID: 20830926 [TBL] [Abstract][Full Text] [Related]
13. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767 [TBL] [Abstract][Full Text] [Related]
14. Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument. Webster GT; Soriano-Disla JM; Kirk J; Janik LJ; Forrester ST; McLaughlin MJ; Stewart RJ Talanta; 2016 Nov; 160():410-416. PubMed ID: 27591631 [TBL] [Abstract][Full Text] [Related]
15. Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy. Gao Y; Cui L; Lei B; Zhai Y; Shi T; Wang J; Chen Y; He H; Wu G Appl Spectrosc; 2014; 68(7):712-22. PubMed ID: 25014837 [TBL] [Abstract][Full Text] [Related]
16. Combining Laser-Induced Breakdown Spectroscopy and Visible Near-Infrared Spectroscopy for Predicting Soil Organic Carbon and Texture: A Danish National-Scale Study. Wangeci A; Adén D; Nikolajsen T; Greve MH; Knadel M Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065862 [TBL] [Abstract][Full Text] [Related]
17. In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum ) fruits using fiber-optic visible-near-infrared (Vis-NIR) spectroscopy. Yang H; Kuang B; Mouazen AM Appl Spectrosc; 2011 Aug; 65(8):931-8. PubMed ID: 21819783 [TBL] [Abstract][Full Text] [Related]
18. [Prediction of As in soil with reflectance spectroscopy]. Zheng GH; Zhou SL; Wu SH Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):173-6. PubMed ID: 21428082 [TBL] [Abstract][Full Text] [Related]
19. Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils. Ba Y; Liu J; Han J; Zhang X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117863. PubMed ID: 31806478 [TBL] [Abstract][Full Text] [Related]
20. Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study. Gholizadeh A; Borůvka L; Vašát R; Saberioon M; Klement A; Kratina J; Tejnecký V; Drábek O PLoS One; 2015; 10(2):e0117457. PubMed ID: 25692671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]