These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29898518)
21. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. Vaudour E; Cerovic ZG; Ebengo DM; Latouche G Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642640 [TBL] [Abstract][Full Text] [Related]
22. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy. Sun W; Li X; Niu B PLoS One; 2018; 13(4):e0196198. PubMed ID: 29677214 [TBL] [Abstract][Full Text] [Related]
23. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Zhang X; Sun W; Cen Y; Zhang L; Wang N Sci Total Environ; 2019 Feb; 650(Pt 1):321-334. PubMed ID: 30199678 [TBL] [Abstract][Full Text] [Related]
24. Prediction and variability mapping of some physicochemical characteristics of calcareous topsoil in an arid region using Vis-SWNIR and NIR spectroscopy. Alomar S; Mireei SA; Hemmat A; Masoumi AA; Khademi H Sci Rep; 2022 May; 12(1):8435. PubMed ID: 35589835 [TBL] [Abstract][Full Text] [Related]
25. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils. Chakraborty S; Weindorf DC; Li B; Ali Aldabaa AA; Ghosh RK; Paul S; Nasim Ali M Sci Total Environ; 2015 May; 514():399-408. PubMed ID: 25681776 [TBL] [Abstract][Full Text] [Related]
26. [Estimation and mapping of soil organic matter based on Vis-NIR reflectance spectroscopy]. Guo Y; Ji WJ; Wu HH; Shi Z Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1135-40. PubMed ID: 23841444 [TBL] [Abstract][Full Text] [Related]
27. Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland. Tiruneh GA; Meshesha DT; Adgo E; Tsunekawa A; Haregeweyn N; Fenta AA; Belay AW; Tadesse N; Fekadu G; Reichert JM PLoS One; 2022; 17(7):e0270629. PubMed ID: 35862343 [TBL] [Abstract][Full Text] [Related]
28. Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils. Correa Pabón RE; Souza Filho CR; Oliveira WJ Sci Total Environ; 2019 Feb; 649():1224-1236. PubMed ID: 30308893 [TBL] [Abstract][Full Text] [Related]
29. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer. Soriano-Disla JM; Janik LJ; McLaughlin MJ Talanta; 2018 Feb; 178():400-409. PubMed ID: 29136840 [TBL] [Abstract][Full Text] [Related]
30. Influence of salinity on bioremediation of oil in soil. Rhykerd RL; Weaver RW; McInnes KJ Environ Pollut; 1995; 90(1):127-30. PubMed ID: 15091510 [TBL] [Abstract][Full Text] [Related]
31. Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible-Near-Infrared-Shortwave-Infrared Spectral Region. Francos N; Notesco G; Ben-Dor E Appl Spectrosc; 2021 Jul; 75(7):882-892. PubMed ID: 33687281 [TBL] [Abstract][Full Text] [Related]
32. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection. Shi T; Chen Y; Liu H; Wang J; Wu G Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784 [TBL] [Abstract][Full Text] [Related]
33. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Jalali M; Jalali M Sci Total Environ; 2016 Oct; 566-567():1080-1093. PubMed ID: 27297266 [TBL] [Abstract][Full Text] [Related]
34. Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy. Lotfollahi L; Delavar MA; Biswas A; Fatehi S; Scholten T J Environ Manage; 2023 Nov; 345():118854. PubMed ID: 37647733 [TBL] [Abstract][Full Text] [Related]
35. Potential of visible and near infrared spectroscopy coupled with machine learning for predicting soil metal concentrations at the regional scale. Nyarko F; Tack FMG; Mouazen AM Sci Total Environ; 2022 Oct; 841():156582. PubMed ID: 35714741 [TBL] [Abstract][Full Text] [Related]
36. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Shi Z; Yin J; Li B; Sun F; Miao T; Cao Y; Shi Z; Chen S; Hu B; Ji W Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447814 [TBL] [Abstract][Full Text] [Related]
37. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane. Chakraborty S; Weindorf DC; Li B; Ali MN; Majumdar K; Ray DP Environ Pollut; 2014 Jul; 190():10-8. PubMed ID: 24686115 [TBL] [Abstract][Full Text] [Related]
38. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634 [TBL] [Abstract][Full Text] [Related]
39. Persistence of fipronil and its metabolites in sandy loam and clay loam soils under laboratory conditions. Mandal K; Singh B Chemosphere; 2013 Jun; 91(11):1596-603. PubMed ID: 23369635 [TBL] [Abstract][Full Text] [Related]
40. [Prediction of Cadmium Content in the Leaves of Navel Orange in Heavy Metal Contaminated Soil Using VIS-NIR Reflectance Spectroscopy]. Shi RJ; Pan XZ; Wang CK; Liu Y; Li YL; Li ZT Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3140-5. PubMed ID: 26978924 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]