These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29898530)

  • 1. A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming.
    Janssens L; Verberk W; Stoks R
    Sci Total Environ; 2018 Jun; 626():1230-1235. PubMed ID: 29898530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.
    Dinh Van K; Janssens L; Debecker S; Stoks R
    Aquat Toxicol; 2014 Jul; 152():215-21. PubMed ID: 24792152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2017 May; 224():714-721. PubMed ID: 28040340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2018 Feb; 233():226-234. PubMed ID: 29096295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.
    Arambourou H; Stoks R
    Aquat Toxicol; 2015 Oct; 167():38-45. PubMed ID: 26261878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide.
    Janssens L; Stoks R
    Environ Pollut; 2017 Jul; 226():79-88. PubMed ID: 28411497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect.
    Van Dievel M; Janssens L; Stoks R
    Aquat Toxicol; 2019 Jul; 212():205-213. PubMed ID: 31132738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly.
    Dinh KV; Janssens L; Therry L; Bervoets L; Bonte D; Stoks R
    Environ Pollut; 2016 Nov; 218():634-643. PubMed ID: 27476426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urbanisation shapes behavioural responses to a pesticide.
    Tüzün N; Debecker S; Op de Beeck L; Stoks R
    Aquat Toxicol; 2015 Jun; 163():81-8. PubMed ID: 25863029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate.
    Verheyen J; Stoks R
    Chemosphere; 2020 Mar; 243():125369. PubMed ID: 31765902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour.
    Tran TT; Janssens L; Dinh KV; Stoks R
    Environ Pollut; 2019 Feb; 245():307-315. PubMed ID: 30447473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes.
    Janssens L; Dinh Van K; Stoks R
    Aquat Toxicol; 2014 Mar; 148():74-82. PubMed ID: 24463491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation.
    Delnat V; Tran TT; Janssens L; Stoks R
    Aquat Toxicol; 2019 Nov; 216():105310. PubMed ID: 31580997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong differences between two congeneric species in sensitivity to pesticides in a warming world.
    de Beeck LO; Verheyen J; Stoks R
    Sci Total Environ; 2018 Mar; 618():60-69. PubMed ID: 29126027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model.
    Delnat V; Janssens L; Stoks R
    Aquat Toxicol; 2019 Jun; 211():38-45. PubMed ID: 30921756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming.
    Meng S; Tran TT; Delnat V; Stoks R
    Environ Pollut; 2021 Sep; 284():117217. PubMed ID: 33915393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of larval exposure to a heat wave and chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans.
    Arambourou H; Stoks R
    Chemosphere; 2015 Jun; 128():148-54. PubMed ID: 25698293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment.
    Dinh KV; Janssens L; Stoks R
    Glob Chang Biol; 2016 Oct; 22(10):3361-72. PubMed ID: 27390895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometric Responses to an Agricultural Pesticide Are Modified by Predator Cues.
    Janssens L; Op de Beeck L; Stoks R
    Environ Sci Technol; 2017 Jan; 51(1):581-588. PubMed ID: 27936640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history.
    Janssens L; Stoks R
    Oecologia; 2014 Oct; 176(2):323-32. PubMed ID: 25103326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.