These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 29898541)

  • 1. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila.
    Spijkerman E; Behrend H; Fach B; Gaedke U
    Sci Total Environ; 2018 Jun; 626():1342-1349. PubMed ID: 29898541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium.
    Spijkerman E; Barua D; Gerloff-Elias A; Kern J; Gaedke U; Heckathorn SA
    Extremophiles; 2007 Jul; 11(4):551-62. PubMed ID: 17429574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations.
    Spijkerman E
    Photosynth Res; 2011 Sep; 109(1-3):179-89. PubMed ID: 21286811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus acquisition by Chlamydomonas acidophila under autotrophic and osmo-mixotrophic growth conditions.
    Spijkerman E
    J Exp Bot; 2007; 58(15-16):4195-202. PubMed ID: 18039735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability.
    Spijkerman E; Stojkovic S; Beardall J
    Photosynth Res; 2014 Sep; 121(2-3):213-21. PubMed ID: 24906887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila.
    Gerloff-Elias A; Barua D; Mölich A; Spijkerman E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):345-54. PubMed ID: 16689867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity.
    Dean AP; Hartley A; McIntosh OA; Smith A; Feord HK; Holmberg NH; King T; Yardley E; White KN; Pittman JK
    Sci Total Environ; 2019 Jan; 647():75-87. PubMed ID: 30077857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake.
    Tittel J; Bissinger V; Gaedke U; Kamjunke N
    Protist; 2005 Jun; 156(1):63-75. PubMed ID: 16048133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.
    Puente-Sánchez F; Díaz S; Penacho V; Aguilera A; Olsson S
    Aquat Toxicol; 2018 Jul; 200():62-72. PubMed ID: 29727772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga.
    Spijkerman E; Wacker A
    Extremophiles; 2011 Sep; 15(5):597-609. PubMed ID: 21822594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila.
    Olsson S; Puente-Sánchez F; Gómez MJ; Aguilera A
    Extremophiles; 2015 May; 19(3):657-72. PubMed ID: 25841750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta).
    Nishikawa K; Tominaga N
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2650-6. PubMed ID: 11826960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain).
    Aguilera A; Amils R
    Aquat Toxicol; 2005 Nov; 75(4):316-29. PubMed ID: 16225936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.
    Mera R; Torres E; Abalde J
    Aquat Toxicol; 2014 Mar; 148():92-103. PubMed ID: 24463493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake.
    Orihel DM; Schindler DW; Ballard NC; Wilson LR; Vinebrooke RD
    Ecol Appl; 2016 Jul; 26(5):1517-1534. PubMed ID: 27755758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydomonas reinhardtii mutants abnormal in their responses to phosphorus deprivation.
    Shimogawara K; Wykoff DD; Usuda H; Grossman AR
    Plant Physiol; 1999 Jul; 120(3):685-94. PubMed ID: 10398703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp.
    Nguyen NHA; Von Moos NR; Slaveykova VI; Mackenzie K; Meckenstock RU; Thűmmler S; Bosch J; Ševců A
    Ecotoxicol Environ Saf; 2018 Jun; 154():36-44. PubMed ID: 29454269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum.
    Clegg MR; Gaedke U; Boehrer B; Spijkerman E
    Oecologia; 2012 Jul; 169(3):609-22. PubMed ID: 22200852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.
    Baker J; Wallschläger D
    J Environ Sci (China); 2016 Nov; 49():169-178. PubMed ID: 28007172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii.
    Webster RE; Dean AP; Pittman JK
    Environ Sci Technol; 2011 Sep; 45(17):7489-96. PubMed ID: 21809879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.