These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 29898552)
1. Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater. Xin J; Tang F; Yan J; La C; Zheng X; Liu W Sci Total Environ; 2018 Jun; 626():638-649. PubMed ID: 29898552 [TBL] [Abstract][Full Text] [Related]
2. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron. Han J; Xin J; Zheng X; Kolditz O; Shao H Environ Sci Pollut Res Int; 2016 Jul; 23(14):14442-50. PubMed ID: 27068901 [TBL] [Abstract][Full Text] [Related]
3. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles. Xin J; Han J; Zheng X; Shao H; Kolditz O J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871 [TBL] [Abstract][Full Text] [Related]
4. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation. Xin J; Tang F; Zheng X; Shao H; Kolditz O; Lu X Water Res; 2016 Sep; 100():80-87. PubMed ID: 27179595 [TBL] [Abstract][Full Text] [Related]
5. Effects of co-existing nitrate on TCE removal by mZVI under different pollution load scenarios: Kinetics, electron efficiency and mechanisms. Xin J; Fan S; Yuan M; Wang X; Zhang X; Zheng X Sci Total Environ; 2020 May; 716():137111. PubMed ID: 32059314 [TBL] [Abstract][Full Text] [Related]
6. Remediation of trichloroethylene by microscale zero-valent iron aged under various groundwater conditions: Removal mechanism and physicochemical transformation. Tang F; Tian F; Zhang L; Yang X; Xin J; Zheng X Sci Total Environ; 2021 Jun; 775():145757. PubMed ID: 33611180 [TBL] [Abstract][Full Text] [Related]
7. Reductive dechlorination of trichloroethene by sulfided microscale zero-valent iron in fresh and saline groundwater: Reactivity, pathways, and selectivity. Tang J; Su W; Liu J; Tang F; Yang X Chemosphere; 2023 Nov; 340():139900. PubMed ID: 37611757 [TBL] [Abstract][Full Text] [Related]
8. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media. Xin J; Tang F; Zheng X; Shao H; Kolditz O Water Res; 2016 Jan; 88():199-206. PubMed ID: 26497937 [TBL] [Abstract][Full Text] [Related]
9. Coupling microscale zero-valent iron and autotrophic hydrogen-bacteria provides a sustainable remediation solution for trichloroethylene-contaminated groundwater: Mechanisms, regulation, and engineering implications. Yuan M; Xin J; Wang X; Zhao F; Wang L; Liu M Water Res; 2022 Jun; 216():118286. PubMed ID: 35339054 [TBL] [Abstract][Full Text] [Related]
10. Coupled microscale zero valent iron-autotrophic hydrogen bacteria dechlorination system is not always superior to its standalone counterparts: A sustainable remediation perspective. Wang X; Xin J; Yuan M; Zhao F; Wang L Sci Total Environ; 2023 Jan; 857(Pt 2):159364. PubMed ID: 36228794 [TBL] [Abstract][Full Text] [Related]
11. Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H Tang F; Xin J; Zheng X; Zheng T; Yuan X; Kolditz O Environ Sci Pollut Res Int; 2017 Oct; 24(30):23538-23548. PubMed ID: 28852962 [TBL] [Abstract][Full Text] [Related]
12. Achieving sustainable trichloroethylene removal from nitrate-containing groundwater: Effects of particle size and dosage of microscale zero-valent iron on its synergistic action with anaerobic bacteria. Zhao F; Xin J; Wang L; Chen L; Wang X; Yuan M J Environ Manage; 2024 Aug; 366():121630. PubMed ID: 38986381 [TBL] [Abstract][Full Text] [Related]
13. Experimental study on in situ remediation of Cr(VI) contaminated groundwater by sulfidated micron zero valent iron stabilized with xanthan gum. Han P; Xie J; Qin X; Yang X; Zhao Y Sci Total Environ; 2022 Jul; 828():154422. PubMed ID: 35276162 [TBL] [Abstract][Full Text] [Related]
14. Coincorporation of N and S into Zero-Valent Iron to Enhance TCE Dechlorination: Kinetics, Electron Efficiency, and Dechlorination Capacity. Gong L; Qiu X; Cheng D; Hu Y; Zhang Z; Yuan Q; Yang D; Liu C; Liang L; He F Environ Sci Technol; 2021 Dec; 55(23):16088-16098. PubMed ID: 34787396 [TBL] [Abstract][Full Text] [Related]
15. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Mateas DJ; Tick GR; Carroll KC J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996 [TBL] [Abstract][Full Text] [Related]
16. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems. Olson MR; Sale TC J Contam Hydrol; 2015; 177-178():206-19. PubMed ID: 25981955 [TBL] [Abstract][Full Text] [Related]
17. Remediation of TCE-contaminated groundwater using KMnO Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775 [TBL] [Abstract][Full Text] [Related]
18. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism. Gu Y; Gong L; Qi J; Cai S; Tu W; He F Water Res; 2019 Aug; 159():233-241. PubMed ID: 31100577 [TBL] [Abstract][Full Text] [Related]
19. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397 [TBL] [Abstract][Full Text] [Related]
20. FeN Gong L; Qiu X; Tratnyek PG; Liu C; He F Environ Sci Technol; 2021 Apr; 55(8):5393-5402. PubMed ID: 33729752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]