BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 29898721)

  • 1. Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway.
    Zhang B; Yu M; Wei WP; Ye BC
    Microb Cell Fact; 2018 Jun; 17(1):91. PubMed ID: 29898721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114.
    Zhang B; Ren LQ; Yu M; Zhou Y; Ye BC
    Bioresour Technol; 2018 Feb; 250():60-68. PubMed ID: 29153651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis guided genetic engineering of Corynebacterium glutamicum S9114 for tween 40-triggered improvement in L-ornithine production.
    Jiang Y; Huang MZ; Chen XL; Zhang B
    Microb Cell Fact; 2020 Jan; 19(1):2. PubMed ID: 31906967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
    Zhang B; Yu M; Zhou Y; Li Y; Ye BC
    Microb Cell Fact; 2017 Sep; 16(1):158. PubMed ID: 28938890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient biosynthesis of l-ornithine from mannitol by using recombinant Corynebacterium glutamicum.
    Sheng Q; Wu X; Jiang Y; Li Z; Wang F; Zhang B
    Bioresour Technol; 2021 May; 327():124799. PubMed ID: 33582518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.
    Jensen JV; Eberhardt D; Wendisch VF
    J Biotechnol; 2015 Nov; 214():85-94. PubMed ID: 26393954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
    Jiang LY; Chen SG; Zhang YY; Liu JZ
    BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H
    Man Z; Rao Z; Xu M; Guo J; Yang T; Zhang X; Xu Z
    Metab Eng; 2016 Nov; 38():310-321. PubMed ID: 27474351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase.
    Kim DJ; Hwang GH; Um JN; Cho JY
    J Mol Microbiol Biotechnol; 2015; 25(1):45-50. PubMed ID: 25720798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose.
    Zhang X; Lai L; Xu G; Zhang X; Shi J; Koffas MAG; Xu Z
    Biotechnol J; 2019 Jun; 14(6):e1800497. PubMed ID: 30791233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum.
    Zhang YY; Bu YF; Liu JZ
    Folia Microbiol (Praha); 2015 Sep; 60(5):393-8. PubMed ID: 25527174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum.
    Petri K; Walter F; Persicke M; Rückert C; Kalinowski J
    BMC Genomics; 2013 Oct; 14():713. PubMed ID: 24138314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.