BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29898802)

  • 1. Trematode cercariae as prey for zooplankton: effect on fitness traits of predators.
    Mironova E; Gopko M; Pasternak A; Mikheev V; Taskinen J
    Parasitology; 2019 Jan; 146(1):105-111. PubMed ID: 29898802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predation on the Invasive Copepod, Pseudodiaptomus forbesi, and Native Zooplankton in the Lower Columbia River: An Experimental Approach to Quantify Differences in Prey-Specific Feeding Rates.
    Adams JB; Bollens SM; Bishop JG
    PLoS One; 2015; 10(11):e0144095. PubMed ID: 26618851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-living parasite infectious stages promote zooplankton abundance under the risk of predation.
    Schultz B; Koprivnikar J
    Oecologia; 2019 Oct; 191(2):411-420. PubMed ID: 31501977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribeiroia ondatrae cercariae are consumed by aquatic invertebrate predators.
    Schotthoefer AM; Labak KM; Beasley VR
    J Parasitol; 2007 Oct; 93(5):1240-3. PubMed ID: 18163369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contributions of a trematode parasite infectious stage to carbon cycling in a model freshwater system.
    Schultz B; Koprivnikar J
    Parasitol Res; 2021 May; 120(5):1743-1754. PubMed ID: 33792814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum).
    Gopko M; Mironova E; Pasternak A; Mikheev V; Taskinen J
    Parasitology; 2017 Dec; 144(14):1971-1979. PubMed ID: 28766473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-host organisms impact transmission at two different life stages in a marine parasite.
    Vielma S; Lagrue C; Poulin R; Selbach C
    Parasitol Res; 2019 Jan; 118(1):111-117. PubMed ID: 30343421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature does not influence functional response of amphipods consuming different trematode prey.
    Born-Torrijos A; Paterson RA; van Beest GS; Schwelm J; Vyhlídalová T; Henriksen EH; Knudsen R; Kristoffersen R; Amundsen PA; Soldánová M
    Parasitol Res; 2020 Dec; 119(12):4271-4276. PubMed ID: 32845358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cercarial Behavior Determines Risk of Predation.
    Selbach C; Rosenkranz M; Poulin R
    J Parasitol; 2019 Apr; 105(2):330-333. PubMed ID: 31021737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small estuarine fishes feed on large trematode cercariae: lab and field investigations.
    Kaplan AT; Rebhal S; Lafferty KD; Kuris AM
    J Parasitol; 2009 Apr; 95(2):477-80. PubMed ID: 18763852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. It's a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators.
    Hobart BK; Moss WE; McDevitt-Galles T; Stewart Merrill TE; Johnson PTJ
    J Anim Ecol; 2022 Jan; 91(1):35-45. PubMed ID: 34543447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species.
    Welsh JE; Liddell C; VAN DER Meer J; Thieltges DW
    Parasitology; 2017 Nov; 144(13):1775-1782. PubMed ID: 28721835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consumption of trematode parasite infectious stages: from conceptual synthesis to future research agenda.
    Koprivnikar J; Thieltges DW; Johnson PTJ
    J Helminthol; 2023 Mar; 97():e33. PubMed ID: 36971341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).
    Pérez-Morales A; Sarma SS; Nandini S
    J Environ Biol; 2014 Nov; 35(6):1013-20. PubMed ID: 25522500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass and productivity of trematode parasites in pond ecosystems.
    Preston DL; Orlofske SA; Lambden JP; Johnson PT
    J Anim Ecol; 2013 May; 82(3):509-17. PubMed ID: 23488451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of turbulence and different predation regimes on zooplankton in highly colored water-implications for environmental change in lakes.
    Härkönen L; Pekcan-Hekim Z; Hellén N; Ojala A; Horppila J
    PLoS One; 2014; 9(11):e111942. PubMed ID: 25375952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake.
    Matsuzaki SS; Suzuki K; Kadoya T; Nakagawa M; Takamura N
    Ecology; 2018 Sep; 99(9):2025-2036. PubMed ID: 29884987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How predator and parasite size interact to determine consumption of infectious stages.
    McDevitt-Galles T; Carpenter SA; Koprivnikar J; Johnson PTJ
    Oecologia; 2021 Nov; 197(3):551-564. PubMed ID: 34405300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tempo-spatial variations of zooplankton communities in relation to environmental factors and the ecological implications: A case study in the hinterland of the Three Gorges Reservoir area, China.
    Lan B; He L; Huang Y; Guo X; Xu W; Zhu C
    PLoS One; 2021; 16(8):e0256313. PubMed ID: 34407135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.
    Robinson HE; Finelli CM; Koehl MA
    Integr Comp Biol; 2013 Nov; 53(5):810-20. PubMed ID: 23942646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.