BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29898922)

  • 1. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells.
    Mollica PA; Zamponi M; Reid JA; Sharma DK; White AE; Ogle RC; Bruno RD; Sachs PC
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29898922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Methylation Leads to DNA Repair Gene Down-Regulation and Trinucleotide Repeat Expansion in Patient-Derived Huntington Disease Cells.
    Mollica PA; Reid JA; Ogle RC; Sachs PC; Bruno RD
    Am J Pathol; 2016 Jul; 186(7):1967-1976. PubMed ID: 27182645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.
    Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J
    Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for Assessing DNA Repair and Repeat Expansion in Huntington's Disease.
    Massey T; McAllister B; Jones L
    Methods Mol Biol; 2018; 1780():483-495. PubMed ID: 29856032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease.
    Cho IK; Easley CA; Chan AWS
    J Assist Reprod Genet; 2022 Oct; 39(10):2413-2430. PubMed ID: 36066723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.
    Liu Y; Qiao F; Leiferman PC; Ross A; Schlenker EH; Wang H
    Hum Mol Genet; 2017 Nov; 26(22):4416-4428. PubMed ID: 28973411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal instability during neurogenesis in Huntington's disease.
    Ruzo A; Croft GF; Metzger JJ; Galgoczi S; Gerber LJ; Pellegrini C; Wang H; Fenner M; Tse S; Marks A; Nchako C; Brivanlou AH
    Development; 2018 Jan; 145(2):. PubMed ID: 29378824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes.
    HD iPSC Consortium
    Cell Stem Cell; 2012 Aug; 11(2):264-78. PubMed ID: 22748968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons.
    Cohen-Carmon D; Sorek M; Lerner V; Divya MS; Nissim-Rafinia M; Yarom Y; Meshorer E
    Mol Neurobiol; 2020 Mar; 57(3):1768-1777. PubMed ID: 31834602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of an induced pluripotent stem cell line from a Huntington's disease patient with a long HTT-PolyQ sequence.
    Miller DC; Lisowski P; Genehr C; Wanker EE; Priller J; Prigione A; Diecke S
    Stem Cell Res; 2023 Apr; 68():103056. PubMed ID: 36863131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono- and Biallelic Inactivation of Huntingtin Gene in Patient-Specific Induced Pluripotent Stem Cells Reveal HTT Roles in Striatal Development and Neuronal Functions.
    Louessard M; Cailleret M; Jarrige M; Bigarreau J; Lenoir S; Dufour N; Rey M; Saudou F; Deglon N; Perrier AL
    J Huntingtons Dis; 2024; 13(1):41-53. PubMed ID: 38427495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington's disease.
    Morozko EL; Smith-Geater C; Monteys AM; Pradhan S; Lim RG; Langfelder P; Kachemov M; Kulkarni JA; Zaifman J; Hill A; Stocksdale JT; Cullis PR; Wu J; Ochaba J; Miramontes R; Chakraborty A; Hazra TK; Lau A; St-Cyr S; Orellana I; Kopan L; Wang KQ; Yeung S; Leavitt BR; Reidling JC; Yang XW; Steffan JS; Davidson BL; Sarkar PS; Thompson LM
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetics of Huntington's Disease.
    Bassi S; Tripathi T; Monziani A; Di Leva F; Biagioli M
    Adv Exp Med Biol; 2017; 978():277-299. PubMed ID: 28523552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of New Isogenic Models of Huntington's Disease Using CRISPR-Cas9 Technology.
    Dabrowska M; Ciolak A; Kozlowska E; Fiszer A; Olejniczak M
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of induced pluripotent stem cell line, ICGi033-A, by reprogramming peripheral blood mononuclear cells from a patient with Huntington's disease.
    Grigor'eva EV; Malakhova AA; Sorogina DA; Pavlova SV; Malankhanova TB; Abramycheva NY; Klyushnikov SA; Illarioshkin SN; Zakian SM
    Stem Cell Res; 2022 Aug; 63():102868. PubMed ID: 35872525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.
    Murmann AE; Gao QQ; Putzbach WE; Patel M; Bartom ET; Law CY; Bridgeman B; Chen S; McMahon KM; Thaxton CS; Peter ME
    EMBO Rep; 2018 Mar; 19(3):. PubMed ID: 29440125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligonucleotides Targeting DNA Repeats Downregulate
    Umek T; Olsson T; Gissberg O; Saher O; Zaghloul EM; Lundin KE; Wengel J; Hanse E; Zetterberg H; Vizlin-Hodzic D; Smith CIE; Zain R
    Nucleic Acid Ther; 2021 Dec; 31(6):443-456. PubMed ID: 34520257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia.
    Stöberl N; Donaldson J; Binda CS; McAllister B; Hall-Roberts H; Jones L; Massey TH; Allen ND
    Sci Rep; 2023 Nov; 13(1):20477. PubMed ID: 37993517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference.
    Murmann AE; Patel M; Jeong SY; Bartom ET; Jennifer Morton A; Peter ME
    Cell Death Dis; 2022 Dec; 13(12):1078. PubMed ID: 36585400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.