BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29899032)

  • 1. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
    Santos-Sacchi J; Tan W
    J Neurosci; 2018 Jun; 38(24):5495-5506. PubMed ID: 29899032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification.
    Santos-Sacchi J; Bai JP; Navaratnam D
    J Neurosci; 2023 Apr; 43(14):2460-2468. PubMed ID: 36868859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance.
    Santos-Sacchi J; Iwasa KH; Tan W
    J Gen Physiol; 2019 Dec; 151(12):1369-1385. PubMed ID: 31676485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State dependent effects on the frequency response of prestin's real and imaginary components of nonlinear capacitance.
    Santos-Sacchi J; Navaratnam D; Tan WJT
    Sci Rep; 2021 Aug; 11(1):16149. PubMed ID: 34373481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
    Santos-Sacchi J; Song L
    Biophys J; 2016 Jun; 110(11):2551-2561. PubMed ID: 27276272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between outer hair cell electromotility and prestin sensor charge depends on voltage operating point.
    Santos-Sacchi J; Tan WJT
    Hear Res; 2022 Sep; 423():108373. PubMed ID: 34776274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride binding and cholesterol effects on high frequency complex nonlinear capacitance (cNLC) in the mouse outer hair cell: experiment and molecular dynamics.
    Bai JP; Zhang C; Renigunta V; Oliver D; Navaratnam D; Beckstein O; Santos-Sacchi J
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prestin kinetics and corresponding frequency dependence augment during early development of the outer hair cell within the mouse organ of Corti.
    Bai JP; Navaratnam D; Santos-Sacchi J
    Sci Rep; 2019 Nov; 9(1):16460. PubMed ID: 31712635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5.
    Song L; Santos-Sacchi J
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3883-8. PubMed ID: 23431177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion.
    Zhai F; Song L; Bai JP; Dai C; Navaratnam D; Santos-Sacchi J
    Neuroscience; 2020 Apr; 431():128-133. PubMed ID: 32061780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
    Dallos P; Wu X; Cheatham MA; Gao J; Zheng J; Anderson CT; Jia S; Wang X; Cheng WH; Sengupta S; He DZ; Zuo J
    Neuron; 2008 May; 58(3):333-9. PubMed ID: 18466744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
    Santos-Sacchi J; Tan W
    Sci Rep; 2020 Apr; 10(1):6222. PubMed ID: 32277153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
    Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ
    J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
    Liberman MC; Gao J; He DZ; Wu X; Jia S; Zuo J
    Nature; 2002 Sep; 419(6904):300-4. PubMed ID: 12239568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein.
    Santos-Sacchi J; Song L
    Biophys J; 2014 Jul; 107(1):126-33. PubMed ID: 24988347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The speed limit of outer hair cell electromechanical activity.
    Santos-Sacchi J
    HNO; 2019 Mar; 67(3):159-164. PubMed ID: 30747242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig.
    Rybalchenko V; Santos-Sacchi J
    J Physiol; 2003 Mar; 547(Pt 3):873-91. PubMed ID: 12562920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity.
    Schaechinger TJ; Gorbunov D; Halaszovich CR; Moser T; Kügler S; Fakler B; Oliver D
    EMBO J; 2011 Jun; 30(14):2793-804. PubMed ID: 21701557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of prestin-dependent and prestin-independent components from complex motile responses in guinea pig outer hair cells.
    Matsumoto N; Kalinec F
    Biophys J; 2005 Dec; 89(6):4343-51. PubMed ID: 16199492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion control of voltage sensing by the motor protein prestin in outer hair cells.
    Rybalchenko V; Santos-Sacchi J
    Biophys J; 2008 Nov; 95(9):4439-47. PubMed ID: 18658219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.