These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 29899213)
1. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose. Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213 [TBL] [Abstract][Full Text] [Related]
2. Study of the Weathering Process of Gasoline by eNose. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319 [TBL] [Abstract][Full Text] [Related]
4. Application of an HS-MS for the detection of ignitable liquids from fire debris. Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705 [TBL] [Abstract][Full Text] [Related]
5. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. Martín-Alberca C; García-Ruiz C; Delémont O J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121 [TBL] [Abstract][Full Text] [Related]
6. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005 [TBL] [Abstract][Full Text] [Related]
8. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245 [TBL] [Abstract][Full Text] [Related]
9. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures. Baerncopf JM; McGuffin VL; Smith RW J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science. de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191 [TBL] [Abstract][Full Text] [Related]
11. Influence of thermal environment in fire on the identification of gasoline combustion residues. Jin J; Chi J; Xue T; Xu J; Liu L; Li Y; Deng L; Zhang J Forensic Sci Int; 2020 Oct; 315():110430. PubMed ID: 32738673 [TBL] [Abstract][Full Text] [Related]
12. Chemometric classification of casework arson samples based on gasoline content. Sinkov NA; Sandercock PM; Harynuk JJ Forensic Sci Int; 2014 Feb; 235():24-31. PubMed ID: 24447448 [TBL] [Abstract][Full Text] [Related]
13. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. Frysinger GS; Gaines RB J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325 [TBL] [Abstract][Full Text] [Related]
14. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network. Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332 [TBL] [Abstract][Full Text] [Related]
15. Progress toward the determination of correct classification rates in fire debris analysis II: utilizing soft independent modeling of class analogy (SIMCA). Waddell EE; Williams MR; Sigman ME J Forensic Sci; 2014 Jul; 59(4):927-35. PubMed ID: 24502629 [TBL] [Abstract][Full Text] [Related]
16. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns. Nichols JE; Harries ME; Lovestead TM; Bruno TJ J Chromatogr A; 2014 Mar; 1334():126-38. PubMed ID: 24569007 [TBL] [Abstract][Full Text] [Related]
17. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples. McGee E; Lang TL J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594 [TBL] [Abstract][Full Text] [Related]
18. Analytical tools for the analysis of fire debris. A review: 2008-2015. Martín-Alberca C; Ortega-Ojeda FE; García-Ruiz C Anal Chim Acta; 2016 Jul; 928():1-19. PubMed ID: 27251852 [TBL] [Abstract][Full Text] [Related]
19. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris. Lu Y; Harrington PB Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164 [TBL] [Abstract][Full Text] [Related]
20. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples. Peschier LJC; Grutters MMP; Hendrikse JN J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]