BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29899298)

  • 1. Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying
    Wang M; Chen Z; Zhang H; Chen H; Gao X
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and cellular analysis of cross-incompatibility in Zea mays.
    Lu Y; Kermicle JL; Evans MM
    Plant Reprod; 2014 Mar; 27(1):19-29. PubMed ID: 24193168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation.
    Kermicle JL; Evans MM
    J Hered; 2010; 101(6):737-49. PubMed ID: 20696670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize.
    Chen Z; Zhang Z; Zhang H; Li K; Cai D; Zhao L; Liu J; Chen H
    Nat Commun; 2022 Apr; 13(1):1993. PubMed ID: 35422051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the molecular control of cross-incompatibility in Zea mays.
    Lu Y; Moran Lauter AN; Makkena S; Scott MP; Evans MMS
    Plant Reprod; 2020 Dec; 33(3-4):117-128. PubMed ID: 32865620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility.
    Zhang Z; Zhang B; Chen Z; Zhang D; Zhang H; Wang H; Zhang Y; Cai D; Liu J; Xiao S; Huo Y; Liu J; Zhang L; Wang M; Liu X; Xue Y; Zhao L; Zhou Y; Chen H
    Nat Commun; 2018 Sep; 9(1):3678. PubMed ID: 30202064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize.
    Wang Y; Li W; Wang L; Yan J; Lu G; Yang N; Xu J; Wang Y; Gui S; Chen G; Li S; Wu C; Guo T; Xiao Y; Warburton ML; Fernie AR; Dresselhaus T; Yan J
    Nat Commun; 2022 Aug; 13(1):4498. PubMed ID: 35922428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single silk- and multiple pollen-expressed PMEs at the Ga1 locus modulate maize unilateral cross-incompatibility.
    Zhang Z; Li K; Zhang H; Wang Q; Zhao L; Liu J; Chen H
    J Integr Plant Biol; 2023 May; 65(5):1344-1355. PubMed ID: 36621865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis reveals that tricarboxylic acid cycle-related genes are associated with maize CMS-C fertility restoration.
    Liu Y; Wei G; Xia Y; Liu X; Tang J; Lu Y; Lan H; Zhang S; Li C; Cao M
    BMC Plant Biol; 2018 Sep; 18(1):190. PubMed ID: 30208841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.
    Xu XH; Chen H; Sang YL; Wang F; Ma JP; Gao XQ; Zhang XS
    BMC Genomics; 2012 Jul; 13():294. PubMed ID: 22748054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics Investigation into the Mechanisms of Self-Incompatibility between Pin and Thrum Morphs of
    Lu W; Bian X; Yang W; Cheng T; Wang J; Zhang Q; Pan H
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29932122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize.
    Zhang H; Liu X; Zhang Y; Jiang C; Cui D; Liu H; Li D; Wang L; Chen T; Ning L; Ma X; Chen H
    Theor Appl Genet; 2012 Feb; 124(3):459-65. PubMed ID: 22009288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pectin methylesterase activities in reproductive tissues of maize plants with different haplotypes of the Ga1 and Ga2 cross incompatibility systems.
    Bapat AR; Scott MP
    Plant Reprod; 2024 May; ():. PubMed ID: 38700669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the style's response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species.
    Zhao P; Zhang L; Zhao L
    BMC Plant Biol; 2015 May; 15():119. PubMed ID: 25976872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pectin Methylesterase
    Moran Lauter AN; Muszynski MG; Huffman RD; Scott MP
    Front Plant Sci; 2017; 8():1926. PubMed ID: 29170674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process.
    Xu XH; Wang F; Chen H; Sun W; Zhang XS
    PLoS One; 2013; 8(1):e53545. PubMed ID: 23301084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses.
    Dresselhaus T; Lausser A; Márton ML
    Ann Bot; 2011 Sep; 108(4):727-37. PubMed ID: 21345919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytological Observation and Transcriptome Comparative Analysis of Self-Pollination and Cross-Pollination in
    Chen Y; Hu B; Zhang F; Luo X; Xie J
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33802927
    [No Abstract]   [Full Text] [Related]  

  • 20. Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [
    Seth R; Bhandawat A; Parmar R; Singh P; Kumar S; Sharma RK
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.