These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29899329)

  • 41. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO
    Li Y; Wen M; Wang Y; Tian G; Wang C; Zhao J
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):910-916. PubMed ID: 32939926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures.
    Wu K; Zhu H; Liu Z; Rodríguez-Córdoba W; Lian T
    J Am Chem Soc; 2012 Jun; 134(25):10337-40. PubMed ID: 22655858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon-Induced Electron-Hole Separation at the Ag/TiO
    Ma J; Gao S
    ACS Nano; 2019 Dec; 13(12):13658-13667. PubMed ID: 31393703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.
    Diroll BT; Schramke KS; Guo P; Kortshagen UR; Schaller RD
    Nano Lett; 2017 Oct; 17(10):6409-6414. PubMed ID: 28892635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy.
    Jarrett JW; Yi C; Stoll T; Rehault J; Oriana A; Branchi F; Cerullo G; Knappenberger KL
    Nanoscale; 2017 Mar; 9(13):4572-4577. PubMed ID: 28321446
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition.
    Wu K; Chen J; McBride JR; Lian T
    Science; 2015 Aug; 349(6248):632-5. PubMed ID: 26250682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous Hot Electron and Hole Injection upon Excitation of Gold Surface Plasmon.
    Hattori Y; Abdellah M; Meng J; Zheng K; Sá J
    J Phys Chem Lett; 2019 Jun; 10(11):3140-3146. PubMed ID: 31117685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles.
    Pelli Cresi JS; Spadaro MC; D'Addato S; Valeri S; Benedetti S; Di Bona A; Catone D; Di Mario L; O'Keeffe P; Paladini A; Bertoni G; Luches P
    Nanoscale; 2019 May; 11(21):10282-10291. PubMed ID: 31099368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.
    Chen SC; Wu KH; Li JX; Yabushita A; Tang SH; Luo CW; Juang JY; Kuo HC; Chueh YL
    Sci Rep; 2015 Dec; 5():18354. PubMed ID: 26679958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes.
    Kim MR; Hafez HA; Chai X; Besteiro LV; Tan L; Ozaki T; Govorov AO; Izquierdo R; Ma D
    Nanoscale; 2016 Jul; 8(26):12946-57. PubMed ID: 27304092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of Hot-Carrier Effects on Charge Separation in Type-II CdS/CdTe Heterostructured Nanorods.
    Okano M; Sakamoto M; Teranishi T; Kanemitsu Y
    J Phys Chem Lett; 2014 Sep; 5(17):2951-6. PubMed ID: 26278242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Au@TiO₂ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field.
    Tu W; Zhou Y; Li H; Li P; Zou Z
    Nanoscale; 2015 Sep; 7(34):14232-6. PubMed ID: 26156088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal.
    Song H; Lee JH; Eom SY; Choi D; Jeong KS
    ACS Nano; 2023 Sep; 17(17):16895-16903. PubMed ID: 37579184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmonic behaviour and plasmon-induced charge separation of nanostructured MoO
    Lee SH; Nishi H; Tatsuma T
    Nanoscale; 2018 Feb; 10(6):2841-2847. PubMed ID: 29362747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Harvesting Sub-Bandgap IR Photons by Photothermionic Hot Electron Transfer in a Plasmonic p-n Junction.
    Yang W; Liu Y; Cullen DA; McBride JR; Lian T
    Nano Lett; 2021 May; 21(9):4036-4043. PubMed ID: 33877837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.