BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29899340)

  • 21. Dispersion Curve Engineering of TiO₂/Silver Hybrid Substrates for Enhanced Surface Plasmon Resonance Detection.
    El-Gohary SH; Choi M; Kim YL; Byun KM
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition.
    Liu Y; Zhang H; Geng Y; Xu S; Xu W; Yu J; Deng W; Yu B; Wang L
    ACS Omega; 2020 Dec; 5(51):32951-32958. PubMed ID: 33403256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced spontaneous light emission by multiple surface plasmon coupling.
    Chu WH; Chuang YJ; Liu CP; Lee PI; Hsu SL
    Opt Express; 2010 Apr; 18(9):9677-83. PubMed ID: 20588817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect.
    Wang H; Li H; Wang Y; Xu S; Xu W
    Nanoscale; 2016 Feb; 8(8):4650-6. PubMed ID: 26853190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical arrangement for surface plasmon-assisted directional enhanced Raman scattering spectroscopy.
    Beketov GV; Shynkarenko OV; Yukhymchuk VO
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():488-495. PubMed ID: 31077952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable plasmonic substrates with ultrahigh Q-factor resonances.
    Chorsi HT; Lee Y; Alù A; Zhang JXJ
    Sci Rep; 2017 Nov; 7(1):15985. PubMed ID: 29167504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual plasmonic modes in the visible light region in rectangular wave-shaped surface relief plasmonic gratings.
    Hidayat R; Pradana JS; Fariz A; Komalasari S; Chalimah S; Bahar H
    Sci Rep; 2023 Mar; 13(1):5274. PubMed ID: 37002239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration.
    Borah R; Ninakanti R; Bals S; Verbruggen SW
    Sci Rep; 2022 Sep; 12(1):15738. PubMed ID: 36130995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor.
    Nakkach M; Lecaruyer P; Bardin F; Sakly J; Ben Lakhdar Z; Canva M
    Appl Opt; 2008 Nov; 47(33):6177-82. PubMed ID: 19023380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting.
    Cui W; Wu Q; Chen B; Li X; Luo X; Peng W
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip.
    Bhave G; Lee Y; Chen P; Zhang JX
    Nanotechnology; 2015 Sep; 26(36):365301. PubMed ID: 26294071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface mode with large field enhancement in dielectric-dimer-on-mirror structures.
    Ao X
    Opt Lett; 2018 Mar; 43(5):1091-1094. PubMed ID: 29489788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface plasmon resonance sensor utilizing an integrated organic light emitting diode.
    Frischeisen J; Mayr C; Reinke NA; Nowy S; Brütting W
    Opt Express; 2008 Oct; 16(22):18426-36. PubMed ID: 18958121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.
    Tabassum R; Gupta BD
    Analyst; 2015 Mar; 140(6):1863-70. PubMed ID: 25635269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved biomolecular detection based on a plasmonic nanoporous gold film fabricated by oblique angle deposition.
    Kim NH; Choi M; Leem JW; Yu JS; Kim TW; Kim TS; Byun KM
    Opt Express; 2015 Jul; 23(14):18777-85. PubMed ID: 26191938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct determination of the experimentally observed penetration depth of the evanescent field via near-infrared absorptions enhanced by the off-resonance of surface plasmons.
    Ikehata A; Ohara K; Ozaki Y
    Appl Spectrosc; 2008 May; 62(5):512-6. PubMed ID: 18498692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.